Changes

From Opengenome.net

The Central Dogma of Molecular Biology

12,295 bytes removed, 15:06, 3 November 2006
no edit summary
</font></p>
<p><br />
<font size="2"><strong>13. 번역 (translation)</strong> - 번역의 기작 역시 복잡하고 매혹적인 것이라고 할 수 있겠다. 번역의 자세한 것은 뒤에 설명할 것이며 지금부터 번역 기작에서 중요한 역할을 하는 라이보좀과 전송 (transfer) RNAdp 대해서 얘기해 보겠다. 1) 라이보좀 : 단백질 합성 기계 - 우리가 흔히 아는 대장균의 라이보좀은 두 개의 소단위체인 50S와 30S로 이루어진다는 것을 알 수 있다. 50S와 30S에서의 숫자는 침강계수 (sedimentation coefficient)를 의미한다. 이 침강계수는 초원심분리기 안에 이들 소단위체들을 넣었을 때에 침강하는 속도를 측정한 것이다. 더 큰 침강 계수를 가진 50S 소단위체는 초원심 분리기 안에서 밑바닥으로 더 빨리 이동한다. 즉, 계수는 입자의 질량과 모양의 기능이라고 할 수 있겠다. 무거운 입자는 가벼운 입자보다 더 빠른 속도로 침강한다. 그리고 구형의 입자는 확장적이고 편평한 입자보다 더 빨리 이동한다. 50S 소단위체는 실질적으로 30S 소단위체보다 두 배 정도 질량이 크다고 할 수 있다. 그리고 50S 소단위체와 30S 소단위체는 서로 맞물려 70S 라이보좀을 형성한다. 여기서 주의해야 할 점은 단지 숫자를 더해서 되는 것이 아니라는 것이다. (50+30=80이 아니다) 이것은 왜냐하면 침강계수는 입자의 질량과 비례하는 것이 아니라 질량 입자의 약 3분의 2 정도로 비례하기 때문이다. 각각의 라이보좀 소단위체는 RNA와 단백질을 포함하고 있다. 30S 입자는 16S의 침강계수를 가진 rRNA 한 분자와 21개의 라이보조멀 단백질을 가지고 있다. 반면 50S 입자는 2개의 rRNA(23S+5S)과 34개의 단백질로 구성되어 있다. 모든 라이보조멀 단백질들은 그들 스스로의 유전자 산물이라고 할 수 있기에 라이보좀은 서로 다른 유전자들에 의해 합성되어진다고 할 수 있다. 진핵 생물에서의 라이보좀은 하나의 rRNA를 더 가지고 있고, 수많은 단백질들을 가지고 있다는 점에서 더 복잡하다고 할 수 있다. rRNA는 단백질 합성에 참여하지만, 단백질들을 암호화하지 않는다는 점에 유의할 필요가 있다. 전사는 오직 rRNA에 대한 유전자 발현 단계일뿐인 것이다. rRNA의 번역은 일어나지 않는다. 2) tRNA (수용 분자) - 전사 기작은 분자생물학자들이 예측하기에는 쉬운 기작이다. RNA가 DNA와 매우 가깝게 닮아서 같은 염기 짝 규칙을 적용할 수 있기 때문이다. 이 규칙을 적용함으로써 RNA 중합효소는 자신이 전사한 유전자들의 복제품을 생산하는 것이다. 그러나 라이보좀의 mRNA에서 단백질로의 번역 기작에 적용되는 규칙은 무엇일까에 대해서 의문점을 가질 수 있게 된다. 핵산의 언어는 단백질 언어로 반드시 번역되어야만 한다. 크릭은 이 문제에 대한 해답을 1958년에 제안하였다. 크릭이 증명한 것은 어떤 종류의 수용 물체가 단백질 언어에서의 아미노산 뿐만 아니라 RNA 언어에서의 뉴클레오타이드들을 인식할 수 있다라고 생각한 것이다. 바로 이게 옳은 것이었다. 그는 크릭은 수용체의 역할을 할 수 있는 알려지지 않은 어떤 유형의 작은 RNA를 지적하였다. 다시 그의 추측은 옳았었다. 번역 과정에서의 수용체 분자는 RNA와 아미노산 양쪽을 모두 인식할 수 있는 작은 RNA 분자였고, 이것이 바로 전송 RNA (tRNA)이니 것이다. tRNA의 구조를 보면 클로버잎 모양의 구조를 띄게 되는데 이 분자는 2개의 중요한 말단 부분을 가진다는 것을 알 수 있다. 한 쪽 말단은 아미노산이 붙을 수 있는 부분이다. 만약 페닐알라닌에 특이적인 tRNA라면 이 부분에 페닐알라닌만이 붙을 수 있다. 페닐알라닌 tRNA 합성효소라고 불리는 효소가 바로 이 반응을 촉매한다고 볼 수 있다. 이렇게 이러한 작용을 하는 효소들을 일반적으로 아미노산 tRNA 합성효소라고 한다. 반면 다른 한 쪽 끝은 3bp의 서열을 가지고 있는데 이것은 mRNA의 3bp와 상보적으로 짝을 지을 수 있는 부분이다. 이러한 mRNA의 3bp의 서열을 코돈이라고 부른다. 그리고 tRNA에서의 상보적인 서열을 자연적으로 앤티코돈이라고 부른다. mRNA의 코돈이 이와 상보적인 서열을 가지고 있는 tRNA의 앤티코돈과 서로 작용하게 되는 것이다. 즉 코돈은 라이보좀이 자라나는 폴리펩타이드 안으로 아미노산을 끼워 넣을 수 있도록 지시하는 셈이 된다. 코돈과 앤티코돈 사이의 인식은 라이보좀에 의해 조절되어지는데 이것은 왓슨과 크릭의 규칙과 같이 명령되어진다. 즉, 어떤 두 가작의 폴리뉴클레외드에서처럼 말이다. 하지만 단백질의 경우 처음 두 개의 염기 쩍정렬의 경우에서만 적용되어지고 나머지 세 번째 염기는 자유로이 짝을 지을 수 있다. 이상 간략하게 살펴보았는데 페닐알라닌의 경우를 예로 들어 보면, 페닐알라닌에 대한 코돈은 UUG가 된다. 이것은 세 개의 철자를 포함하는 유전자 코드임을 암시한다. 여기서 3bp의 코돈의 가능한 가짓수를 예측할 수 있다. 염기는 4종류로 구성되어 있으므로 3개의 코돈을 만들 수 있는 가짓수는 4*4*4=64개라는 것을 예측 가능하다. 하지만 현재 이 세상에는 20가지의 아미노산이 존재한다. 그러면 몇몇 코돈은 사용되어지지 않는 것일까? 사실, UAG, UGA, UAA 코돈들은 종결에 사용되어지는 것들이다. 즉 라이보좀에게 단백질 합성을 중지하라는 신호를 전달해 주는 역할을 한다. 이 3가지 외에 모든 다른 코돈들은 아미노산을 암호화한다. 이것은 대부분의 아미노산이 한 개 이상의 코돈을 가지고 있다는 것을 의미한다. 따라서 유전자 코드는 degenerate(축중한, 퇴화한) 하다고 할 수 있다. 3) 단백질 합성의 개시 - 우리는 세 개의 번역을 종결하는 코돈에 대해서 알아 보았다. AUG라는 코돈은 역시 보통 번역을 개시한다. 번역의 종결과 개시는 확실히 다른 것이다. 즉, 세 개의 종결 코드는 단백질 factor와 상호결합하는 반면 개시 코돈은 특정의 아미노산-tRNA와 상호작용한다. 진핵생물에서의 아미노산-tRNA는 메싸이오닐 tRNA (tRNA에 메싸이오닌이 결합한 것)인 반면 원핵생물에서는 N-포밀메싸이오닐 tRNA로서 메싸이오닌의 아미노 그룹에 포밀 그룹이 붙은 메싸이오닐 tRNA인 것이다. 우리는 AUG 코돈이 mRNA의 처음 부분에서 뿐만 아니라, 메시지의 중간부분에 도 있다는 것을 알았다. AUG들은 개시 코돈으로서도 작용하지만, 서열의 중간부분에 있을 때에는 단지 메싸이오닌 아미노산을 암호화하는 것이다. 이 차이점은 다음과 같이 설명할 수 있다. 원핵세포에서의 메시지는 Shine-Dalgarno 서열이라고 부리우는 특정한 염기 서열을 가지고 있는데, 이것은 AUG 개시 코돈의 바로 윗부분에 존재한다. Shine-Dalgarno 서열은 AUG 근처로 라이보좀들을 RMf여 들여 번역 과정을 시작할 수 있는 것이다. 반면 진핵세포에서는 Shine-Dalgarno 서열을 가지고 있지 않다. 대신 진핵세포에서의 mRNA는 5번 말단 부분에 cap이라고 불리우는 특정한 메틸화된 뉴클레오타이드를 가지고 있다. CBP (cap binding protein)이라고 불리우는 단백질이 cap에 결합을 하게 되고 라이보좀을 이끌어 오는 역할을 하게 된다. 4) 번역 신장 - 번역의 개시 단계 마지막 부분에서는 개시하는 아미노산-tRNA가 라이보좀의 P site에 결합을 하게 된다. 신장이 일어나기 위해서는 라이보좀은 한 번에 하나씩 개시하고 있는 아미노산에 아미노산들을 붙이는 것을 필요로 한다. 예를 들어 E.coli에서의 신장 단계를 살펴 보기로 한다. 신장은 라이보좀의 또 다른 부분인 A-site에 두 번째 아미노산 tRNA기 결합함으로써 시작된다. 이 과정은 EF-Tu라고 불리우는 신장 요소를 필요로 한다. 여기서 EF는 elongation factor를 의미하고 GTP에 의해 제공된 에너지라고 할 수 있다. 다음으로 두 개의 아미노산 사이에는 반드시 펩타이드 결합이 형성되어야만 한다. 큰 라이보조멀 소단위체는 peptidyl transferase라고 불리우는 효소를 가지고 있는데 이것은 아미노산 사이나 P site에서의 펩타이드와 A site에서의 아미노산-tRNA의 아미노산 부분사이의&nbsp; 펩타이드 결합을 형성한다. 결과 A site에서의 dipeptidyl-tRNA가 생기게 된다. dipeptide는 대장균의 경우 fMet와 아직 tRNA에 결합하고 있는 두 번 째 아미노산으로 구성되어진다. 큰 라이보조멀 RNA는&nbsp; peptidyl transferase 활성 장소를 가지고 있다. 신장의 세 번재 단계인 translocation (전좌, 전위)는 라이보좀을 따라 mRNA가 한 코돈의 길이로 이동하는 것을 내포한다. 이것은 A site에 있던 dipeptidyl-tRNA가 P site로 이동하게 되는 것이고 P site에 있던 탈아세틸화된 tRNA가 E site로 이동하는 것을 의미한다. E site는 라이보좀으로부터 방출되어지는 곳이라고 생각하면 될 것이다. 전위는 EF-G라고 불리우는 또 다른 신장 요소와 GTP를 필요로 한다. 5) 번역의 종결과 mRNA의 구조 - 세 개의 서로 다른 코돈 (UAG, UAA, UGA)는 번역의 종결을 유발한다. release factor라고 불리우는 단백질 요소는 이들 종결 코돈 (또는 정지 코돈)을 인식하고 폴리펩타이드들의 방출과 더불어 번역을 종결하는 것이다. 유전자의 암호화되는 지역의 한쪽 말단에서의 개시 코돈과 또 다른 말단에서의 종결 코돈은 ORF (open reading frame)를 동정한다. ORF가 open이라고 불리우는 이유는 ORF는 상응하는 mRNA의 종결을 방해하는 내부 종결 코돈을 중간에 가지고 있지 않기 때문이다. Reading frame이라는 이름은 라이보좀이 세 가지의 다른 방법으로 mRNA를 읽을 수 있다는 점, 또는 라이보좀이 번역을 시작하는 곳에 의존하여 &ldquo;frame&quot;이라는 이름을 얻게 된 것이다. ORF는 아주 작은 유전자로서 개시 코돈과 종결 코돈을 포함한다. 여기서 이들 DNA 코돈들은 이와 상응하는 코돈을 가지는 mRNA로 전사되어진다는 것을 명심해야 한다. 그리고 번역 과정이 이루어지게 되는데 여기서 또 주의해야 할 점은 ORF의 끝부분인 종결 코돈 부분은 번역되어지지 않는 것이다. 즉 전사과정은 종결 코돈까지 진행이 되어 mRNA를 만들지만, 번역과정에서는 종결 신호로 작용하여 더 이상의 아미노산을 합성하지는 않는 것이다. 정리해 보면 전사와 번역 과정은 같은 장소에서 개시, 종결되어지는 것은 아니다. 전사는 ORF의 앞부분에서 시작하지만, 번역은 전사 시작보다 아래 부분인 개시 코돈 (AUG)로부터 시작된다. 그러므로 유전자로부터 생성된 mRNA는 앞부분에 leader 혹은 5&lsquo;-UTR (5'-untranslated region)이라고 불리우는 부분을 갖게 되는 것이다. 유사한 방법으로 ORF의 종결 코돈과 전사 종결 부분 사이에서는 trailer 또는 3&rsquo;-UTR (3'-untranslated region)이라는 부분이 생기게 된다. 진핵 생물의 유전자에서는 전사 종결 부분은 아마도 훨씬 밑에 부분에 존재할지도 모른다. 즉, mRNA는 번역 종결 코돈의 아랫 부분 (downstream)을 잘릴 것이고, poly A가 mRNA의 3번 말단 부분에 첨가되어질 것이다. 이 경우에 trailer는 종결 코돈과 poly A 사이에 있는 RNA의 길이가 될 것이다.</font></p><p><font size="2"><strong>14. 원핵생물과 진핵생물</strong> - 이상 central dogma의 기본 원리인 DNA 복제, 전사, 번역에 대해서 자세하게 알아 보았다. 이들 세 가지 과정은 모든 세포 생물체에서 일어나는 과정이다. 하지만, 원핵생물과 진핵생물 사이에서는 이 3가지 과정의 차이점이 존재한다. 이것은 유전정보의 조직에서의 차이점에서 기인된 것인데, 바로 진핵생물은 핵 (nucleus)을 가지고 있기 때문이다. 원핵생물과 진핵생물에서의 DNA 구성에는 기본적인 차이점이 있다. 요약해 보자면, 전형적인 원핵생물의 유전체는 하나의 닫혀진 환형 DNA 분자로서 세포 내의 세포질 상에 존재한다. 그리고 진핵생물의 유전체는 몇몇의 일렬로 된 (linear) DNA 조각들로 세포내의 핵 안의 각각의 염색체 안에 존재하게 된다. 원핵생물에서는 세포질로부터 염색체를 구분하는 막이 존재하지 않는다. 그러나 진핵생물에서는 염색체가 핵 안에 존재하고 세포질 상에 라이보좀이 있어, 전사와 번역이 공간적으로 구분된 장소에서 일어나게 된다. (전사는 핵 안에서 일어나고, 번역은 세포질 상에서 일어난다.) 모든 종류의 세포에서 유전자의 정의는 같다. 단백질을 특이화하는 DNA 조각, tRNA, rRNA 용어들을 보면 말이다. 하지만 진핵생물에서는 단백질을 암호화하는 유전자들이 둘 또는 그 이상의 암호화 지역으로 쪼개짐에 따라, 암호화하는 부분과 암호화하지 않는 부분은 구분되어지는 것이다. 이렇게 암호화하는 서열을 엑손이라 부르고 암호화하지 않는 서열을 인트론이라고 한다. 인트론과 엑손 모두 primary 전사물 또는 pre-mRNA로 전사되어지고 기능적인 즉, 기능을 가진 mRNA는 암호화하지 않는 부분을 제거함으로써 형성되어진다.&nbsp; 진핵생물에서 pre-mRNA에서 암호화되지 않는 부분을 잘라내는 과정을 splicing이라고 한다. 이것은 pre-mRNA가 mature mRNA로 가능하게 함으로써 기능을 갖도록 하는 것이다. </font></p>
<p><font size="2"><strong>15. Central dogma의 예외</strong> - 지금까지 분자생물학에서 사용되는 중요한 원리인 central dogma에 대해서 알아 보았다. 한 마디로 정의하면 DNA는 복제를 위해 스스로 주형이 되고, DNA로부터 RNA가 전사되며, RNA는 단백질로 번역된다는 것이다. 하지만 central dogma는 때로 오해를 불러 일으킬 수 있는데, 이는 DNA에서 RNA, 그리고 단백질로의 정보 흐름의 표준이 때때로 혼동을 일으킬 수 있기 때문이다. 사실 정보 흐름의 표준에 위배하는 몇 가지의 예외가 존재한다. 그 예로는 먼저 reverse transcription (역전사)이 있다. RNA를 유전 정보 전달 물질로 가지는 바이러스 등에서 발견되는 것으로 RNA를 주형으로 해서 DNA를 만드는 것이다. 여기서 작용하는 효소는 reverse transcriptase (역전사 효소)이다. 즉, DNA에서 RNA가 아닌, RNA에서 DNA로의 유전 정보 전달이 이루어지는 것은 명백히 central dogma에 위배된다고 할 수 있다. 다음은 prion의 발견이다. 이 단백질은 DNA나 RNA를 거치지 않고 단백질 수준에서 복제를 하기 때문에 이것도 central dogma에 위배되는 좋은 예라고 할 수 있다. Prion이 일으키는 대표적인 질병으로는 광우병을 들 수 있다.</font></p>
<p><font size="2"><strong>*** Reference ***<br />
0
edits

Navigation menu