Changes

From Opengenome.net

Dopamine

155,844 bytes added, 16:41, 31 October 2010
no edit summary
<span class="text13">
<p><strong>Dopamine</strong> is a <a title="Catecholamine" href="/wiki/Catecholamine"><font color="#0645ad">catecholamine</font></a> <a title="Neurotransmitter" href="/wiki/Neurotransmitter"><font color="#0645ad">neurotransmitter</font></a> present in a wide variety of animals, including both vertebrates and invertebrates. In the <a title="Human brain" href="/wiki/Human_brain"><font color="#0645ad">brain</font></a>, this <a title="Phenethylamine" href="/wiki/Phenethylamine"><font color="#0645ad">phenethylamine</font></a> functions as a <a title="Neurotransmitter" href="/wiki/Neurotransmitter"><font color="#0645ad">neurotransmitter</font></a>, activating the five types of <a title="Dopamine receptor" href="/wiki/Dopamine_receptor"><font color="#0645ad">dopamine receptors</font></a>&mdash;<a class="mw-redirect" title="Dopamine D1 receptor" href="/wiki/Dopamine_D1_receptor"><font color="#0645ad">D<sub><font size="2">1</font></sub></font></a>, <a class="mw-redirect" title="Dopamine D2 receptor" href="/wiki/Dopamine_D2_receptor"><font color="#0645ad">D<sub><font size="2">2</font></sub></font></a>, <a class="mw-redirect" title="Dopamine D3 receptor" href="/wiki/Dopamine_D3_receptor"><font color="#0645ad">D<sub><font size="2">3</font></sub></font></a>, <a class="mw-redirect" title="Dopamine D4 receptor" href="/wiki/Dopamine_D4_receptor"><font color="#0645ad">D<sub><font size="2">4</font></sub></font></a>, and <a class="mw-redirect" title="Dopamine D5 receptor" href="/wiki/Dopamine_D5_receptor"><font color="#0645ad">D<sub><font size="2">5</font></sub></font></a>&mdash;and their variants. Dopamine is produced in several areas of the brain, including the <a title="Substantia nigra" href="/wiki/Substantia_nigra"><font color="#0645ad">substantia nigra</font></a> and the <a title="Ventral tegmental area" href="/wiki/Ventral_tegmental_area"><font color="#0645ad">ventral tegmental area</font></a>.<sup id="cite_ref-0" class="reference"><a href="#cite_note-0"><font size="2"><font color="#0645ad"><span>[</span>1<span>]</span></font></font></a></sup> Dopamine is also a <a title="Neurohormone" href="/wiki/Neurohormone"><font color="#0645ad">neurohormone</font></a> released by the <a title="Hypothalamus" href="/wiki/Hypothalamus"><font color="#0645ad">hypothalamus</font></a>. Its main function as a hormone is to inhibit the release of <a title="Prolactin" href="/wiki/Prolactin"><font color="#0645ad">prolactin</font></a> from the anterior lobe of the <a class="mw-redirect" title="Pituitary" href="/wiki/Pituitary"><font color="#0645ad">pituitary</font></a>.</p>
<p>Dopamine is available as an intravenous <a class="mw-redirect" title="Medication" href="/wiki/Medication"><font color="#0645ad">medication</font></a> acting on the <a title="Sympathetic nervous system" href="/wiki/Sympathetic_nervous_system"><font color="#0645ad">sympathetic</font></a> <a title="Nervous system" href="/wiki/Nervous_system"><font color="#0645ad">nervous system</font></a>, producing effects such as increased <a title="Heart rate" href="/wiki/Heart_rate"><font color="#0645ad">heart rate</font></a> and <a title="Blood pressure" href="/wiki/Blood_pressure"><font color="#0645ad">blood pressure</font></a>. However, because dopamine cannot cross the <a title="Blood-brain barrier" href="/wiki/Blood-brain_barrier"><font color="#0645ad">blood-brain barrier</font></a>, dopamine given as a drug does not directly affect the <a title="Central nervous system" href="/wiki/Central_nervous_system"><font color="#0645ad">central nervous system</font></a>. To increase the amount of dopamine in the brains of patients with diseases such as <a title="Parkinson's disease" href="/wiki/Parkinson%27s_disease"><font color="#0645ad">Parkinson's disease</font></a> and dopa-responsive <a title="Dystonia" href="/wiki/Dystonia"><font color="#0645ad">dystonia</font></a>, <a title="L-DOPA" href="/wiki/L-DOPA"><font color="#0645ad">L-DOPA</font></a>, which is the precursor of dopamine, can be given because it can cross the <a title="Blood-brain barrier" href="/wiki/Blood-brain_barrier"><font color="#0645ad">blood-brain barrier</font></a>.</p>
<p>
<table id="toc" class="toc">
<tbody>
<tr>
<td>
<div id="toctitle">
<h2>Contents</h2>
<span class="toctoggle"><font size="2">[</font><a id="togglelink" class="internal" href="#"><font color="#0645ad" size="2">hide</font></a><font size="2">]</font></span></div>
<ul>
<li class="toclevel-1 tocsection-1"><a href="#History"><font color="#0645ad"><span class="tocnumber">1</span> <span class="toctext">History</span></font></a></li>
<li class="toclevel-1 tocsection-2"><a href="#Biochemistry"><font color="#0645ad"><span class="tocnumber">2</span> <span class="toctext">Biochemistry</span></font></a>
<ul>
<li class="toclevel-2 tocsection-3"><a href="#Name_and_family"><font color="#0645ad"><span class="tocnumber">2.1</span> <span class="toctext">Name and family</span></font></a></li>
<li class="toclevel-2 tocsection-4"><a href="#Biosynthesis"><font color="#0645ad"><span class="tocnumber">2.2</span> <span class="toctext">Biosynthesis</span></font></a></li>
<li class="toclevel-2 tocsection-5"><a href="#Inactivation_and_degradation"><font color="#0645ad"><span class="tocnumber">2.3</span> <span class="toctext">Inactivation and degradation</span></font></a></li>
</ul>
</li>
<li class="toclevel-1 tocsection-6"><a href="#Functions_in_the_brain"><font color="#0645ad"><span class="tocnumber">3</span> <span class="toctext">Functions in the brain</span></font></a>
<ul>
<li class="toclevel-2 tocsection-7"><a href="#Anatomy"><font color="#0645ad"><span class="tocnumber">3.1</span> <span class="toctext">Anatomy</span></font></a></li>
<li class="toclevel-2 tocsection-8"><a href="#Tonic_and_phasic_activity"><font color="#0645ad"><span class="tocnumber">3.2</span> <span class="toctext">Tonic and phasic activity</span></font></a></li>
<li class="toclevel-2 tocsection-9"><a href="#Movement"><font color="#0645ad"><span class="tocnumber">3.3</span> <span class="toctext">Movement</span></font></a></li>
<li class="toclevel-2 tocsection-10"><a href="#Cognition_and_frontal_cortex"><font color="#0645ad"><span class="tocnumber">3.4</span> <span class="toctext">Cognition and frontal cortex</span></font></a></li>
<li class="toclevel-2 tocsection-11"><a href="#Regulating_prolactin_secretion"><font color="#0645ad"><span class="tocnumber">3.5</span> <span class="toctext">Regulating prolactin secretion</span></font></a></li>
<li class="toclevel-2 tocsection-12"><a href="#Motivation_and_pleasure"><font color="#0645ad"><span class="tocnumber">3.6</span> <span class="toctext">Motivation and pleasure</span></font></a>
<ul>
<li class="toclevel-3 tocsection-13"><a href="#Reinforcement"><font color="#0645ad"><span class="tocnumber">3.6.1</span> <span class="toctext">Reinforcement</span></font></a></li>
<li class="toclevel-3 tocsection-14"><a href="#Reuptake_inhibition.2C_expulsion"><font color="#0645ad"><span class="tocnumber">3.6.2</span> <span class="toctext">Reuptake inhibition, expulsion</span></font></a></li>
<li class="toclevel-3 tocsection-15"><a href="#Incentive_salience"><font color="#0645ad"><span class="tocnumber">3.6.3</span> <span class="toctext">Incentive salience</span></font></a></li>
<li class="toclevel-3 tocsection-16"><a href="#Dopamine.2C_learning.2C_and_reward-seeking_behavior"><font color="#0645ad"><span class="tocnumber">3.6.4</span> <span class="toctext">Dopamine, learning, and reward-seeking behavior</span></font></a></li>
<li class="toclevel-3 tocsection-17"><a href="#Animal_studies"><font color="#0645ad"><span class="tocnumber">3.6.5</span> <span class="toctext">Animal studies</span></font></a></li>
<li class="toclevel-3 tocsection-18"><a href="#The_effects_of_drugs_that_reduce_dopamine_activity"><font color="#0645ad"><span class="tocnumber">3.6.6</span> <span class="toctext">The effects of drugs that reduce dopamine activity</span></font></a></li>
<li class="toclevel-3 tocsection-19"><a href="#Opioid_and_cannabinoid_transmission"><font color="#0645ad"><span class="tocnumber">3.6.7</span> <span class="toctext">Opioid and cannabinoid transmission</span></font></a></li>
<li class="toclevel-3 tocsection-20"><a href="#Sociability"><font color="#0645ad"><span class="tocnumber">3.6.8</span> <span class="toctext">Sociability</span></font></a></li>
<li class="toclevel-3 tocsection-21"><a href="#Processing_of_pain"><font color="#0645ad"><span class="tocnumber">3.6.9</span> <span class="toctext">Processing of pain</span></font></a></li>
<li class="toclevel-3 tocsection-22"><a href="#Salience"><font color="#0645ad"><span class="tocnumber">3.6.10</span> <span class="toctext">Salience</span></font></a></li>
<li class="toclevel-3 tocsection-23"><a href="#Behavior_disorders"><font color="#0645ad"><span class="tocnumber">3.6.11</span> <span class="toctext">Behavior disorders</span></font></a></li>
</ul>
</li>
<li class="toclevel-2 tocsection-24"><a href="#Latent_inhibition_and_creative_drive"><font color="#0645ad"><span class="tocnumber">3.7</span> <span class="toctext">Latent inhibition and creative drive</span></font></a></li>
<li class="toclevel-2 tocsection-25"><a href="#Chemoreceptor_trigger_zone"><font color="#0645ad"><span class="tocnumber">3.8</span> <span class="toctext">Chemoreceptor trigger zone</span></font></a></li>
<li class="toclevel-2 tocsection-26"><a href="#Dopaminergic_mind_hypothesis"><font color="#0645ad"><span class="tocnumber">3.9</span> <span class="toctext">Dopaminergic mind hypothesis</span></font></a></li>
</ul>
</li>
<li class="toclevel-1 tocsection-27"><a href="#Links_to_psychosis"><font color="#0645ad"><span class="tocnumber">4</span> <span class="toctext">Links to psychosis</span></font></a></li>
<li class="toclevel-1 tocsection-28"><a href="#Therapeutic_use"><font color="#0645ad"><span class="tocnumber">5</span> <span class="toctext">Therapeutic use</span></font></a></li>
<li class="toclevel-1 tocsection-29"><a href="#Nonneural_functions"><font color="#0645ad"><span class="tocnumber">6</span> <span class="toctext">Nonneural functions</span></font></a>
<ul>
<li class="toclevel-2 tocsection-30"><a href="#Immunoregulatory"><font color="#0645ad"><span class="tocnumber">6.1</span> <span class="toctext">Immunoregulatory</span></font></a></li>
<li class="toclevel-2 tocsection-31"><a href="#Peripheral_effects"><font color="#0645ad"><span class="tocnumber">6.2</span> <span class="toctext">Peripheral effects</span></font></a></li>
<li class="toclevel-2 tocsection-32"><a href="#Renal_effects"><font color="#0645ad"><span class="tocnumber">6.3</span> <span class="toctext">Renal effects</span></font></a></li>
</ul>
</li>
<li class="toclevel-1 tocsection-33"><a href="#Dopamine_and_fruit_browning"><font color="#0645ad"><span class="tocnumber">7</span> <span class="toctext">Dopamine and fruit browning</span></font></a></li>
<li class="toclevel-1 tocsection-34"><a href="#See_also"><font color="#0645ad"><span class="tocnumber">8</span> <span class="toctext">See also</span></font></a></li>
<li class="toclevel-1 tocsection-35"><a href="#References"><font color="#0645ad"><span class="tocnumber">9</span> <span class="toctext">References</span></font></a></li>
<li class="toclevel-1 tocsection-36"><a href="#External_links"><font color="#0645ad"><span class="tocnumber">10</span> <span class="toctext">External links</span></font></a></li>
</ul>
</td>
</tr>
</tbody>
</table>
<script type="text/javascript">
//<![CDATA[
if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); }
//]]>
</script>
</p>
<h2><span class="editsection">[<a title="Edit section: History" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=1"><font color="#0645ad">edit</font></a>]</span> <span id="History" class="mw-headline">History</span></h2>
<p>Dopamine was first synthesized in 1910 by George Barger and James Ewens at Wellcome Laboratories in London, England.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><font size="2"><font color="#0645ad"><span>[</span>2<span>]</span></font></font></a></sup> It was named dopamine because it was a <a class="mw-redirect" title="Monoamine" href="/wiki/Monoamine"><font color="#0645ad">monoamine</font></a>, and its synthetic precursor was 3,4-<em>d</em>ihydr<em>o</em>xy<em>p</em>henyl<em>a</em>lanine (<a title="L-DOPA" href="/wiki/L-DOPA"><font color="#0645ad">L-DOPA</font></a>). Dopamine's function as a neurotransmitter was first recognized in 1958 by <a title="Arvid Carlsson" href="/wiki/Arvid_Carlsson"><font color="#0645ad">Arvid Carlsson</font></a> and Nils-&Aring;ke Hillarp at the Laboratory for Chemical Pharmacology of the National Heart Institute of <a title="Sweden" href="/wiki/Sweden"><font color="#0645ad">Sweden</font></a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><font size="2"><font color="#0645ad"><span>[</span>3<span>]</span></font></font></a></sup> Carlsson was awarded the 2000 <a title="Nobel Prize in Physiology or Medicine" href="/wiki/Nobel_Prize_in_Physiology_or_Medicine"><font color="#0645ad">Nobel Prize in Physiology or Medicine</font></a> for showing that dopamine is not just a precursor of <a title="Norepinephrine" href="/wiki/Norepinephrine"><font color="#0645ad">norepinephrine</font></a> (noradrenaline) and <a title="Epinephrine" href="/wiki/Epinephrine"><font color="#0645ad">epinephrine</font></a> (adrenaline), but a neurotransmitter as well.</p>
<h2><span class="editsection">[<a title="Edit section: Biochemistry" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=2"><font color="#0645ad">edit</font></a>]</span> <span id="Biochemistry" class="mw-headline">Biochemistry</span></h2>
<div class="thumb tright">
<div style="WIDTH: 222px" class="thumbinner"><a class="image" href="/wiki/File:Catecholamines_biosynthesis.svg"><img class="thumbimage" alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Catecholamines_biosynthesis.svg/220px-Catecholamines_biosynthesis.svg.png" width="220" height="500" /></a>
<div class="thumbcaption">
<div class="magnify"><a class="internal" title="Enlarge" href="/wiki/File:Catecholamines_biosynthesis.svg"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png" width="15" height="11" /></a></div>
Biosynthesis of dopamine</div>
</div>
</div>
<h3><span class="editsection">[<a title="Edit section: Name and family" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=3"><font color="#0645ad">edit</font></a>]</span> <span id="Name_and_family" class="mw-headline">Name and family</span></h3>
<p>Dopamine has the chemical formula C<sub><font size="2">6</font></sub>H<sub><font size="2">3</font></sub>(OH)<sub><font size="2">2</font></sub>-CH<sub><font size="2">2</font></sub>-CH<sub><font size="2">2</font></sub>-NH<sub><font size="2">2</font></sub>. Its chemical name is &quot;4-(2-aminoethyl)benzene-1,2-diol&quot; and its abbreviation is &quot;DA.&quot;</p>
<p>As a member of the <a title="Catecholamine" href="/wiki/Catecholamine"><font color="#0645ad">catecholamine</font></a> family, dopamine is a precursor to <a title="Norepinephrine" href="/wiki/Norepinephrine"><font color="#0645ad">norepinephrine</font></a> (noradrenaline) and then <a title="Epinephrine" href="/wiki/Epinephrine"><font color="#0645ad">epinephrine</font></a> (adrenaline) in the biosynthetic pathways for these neurotransmitters.</p>
<h3><span class="editsection">[<a title="Edit section: Biosynthesis" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=4"><font color="#0645ad">edit</font></a>]</span> <span id="Biosynthesis" class="mw-headline">Biosynthesis</span></h3>
<p>Dopamine is biosynthesized in the body (mainly by nervous tissue and the <a title="Adrenal medulla" href="/wiki/Adrenal_medulla"><font color="#0645ad">medulla</font></a> of the <a title="Adrenal gland" href="/wiki/Adrenal_gland"><font color="#0645ad">adrenal glands</font></a>) first by the hydroxylation of the amino acid <a class="mw-redirect" title="L-tyrosine" href="/wiki/L-tyrosine"><font color="#0645ad">L-tyrosine</font></a> to L-DOPA via the enzyme tyrosine 3-monooxygenase, also known as <a title="Tyrosine hydroxylase" href="/wiki/Tyrosine_hydroxylase"><font color="#0645ad">tyrosine hydroxylase</font></a>, and then by the <a title="Decarboxylation" href="/wiki/Decarboxylation"><font color="#0645ad">decarboxylation</font></a> of <a title="L-DOPA" href="/wiki/L-DOPA"><font color="#0645ad">L-DOPA</font></a> by <a title="Aromatic L-amino acid decarboxylase" href="/wiki/Aromatic_L-amino_acid_decarboxylase"><font color="#0645ad">aromatic L-amino acid decarboxylase</font></a> (which is often referred to as dopa decarboxylase). In some neurons, dopamine is further processed into <a title="Norepinephrine" href="/wiki/Norepinephrine"><font color="#0645ad">norepinephrine</font></a> by <a class="mw-redirect" title="Dopamine beta-hydroxylase" href="/wiki/Dopamine_beta-hydroxylase"><font color="#0645ad">dopamine beta-hydroxylase</font></a>.</p>
<p>In <a title="Neuron" href="/wiki/Neuron"><font color="#0645ad">neurons</font></a>, dopamine is packaged after synthesis into <a class="mw-redirect" title="Vesicle (biology)" href="/wiki/Vesicle_(biology)"><font color="#0645ad">vesicles</font></a>, which are then released into the <a title="Synapse" href="/wiki/Synapse"><font color="#0645ad">synapse</font></a> in response to a presynaptic <a title="Action potential" href="/wiki/Action_potential"><font color="#0645ad">action potential</font></a>.</p>
<div style="CLEAR: both"></div>
<div class="thumb tright">
<div style="WIDTH: 222px" class="thumbinner"><a class="image" href="/wiki/File:Dopamine_degradation.svg"><img class="thumbimage" alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Dopamine_degradation.svg/220px-Dopamine_degradation.svg.png" width="220" height="211" /></a>
<div class="thumbcaption">
<div class="magnify"><a class="internal" title="Enlarge" href="/wiki/File:Dopamine_degradation.svg"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png" width="15" height="11" /></a></div>
Biodegradation of dopamine</div>
</div>
</div>
<h3><span class="editsection">[<a title="Edit section: Inactivation and degradation" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=5"><font color="#0645ad">edit</font></a>]</span> <span id="Inactivation_and_degradation" class="mw-headline">Inactivation and degradation</span></h3>
<p>Two major degradation pathways for dopamine exist. In most areas of the brain, including the <a title="Striatum" href="/wiki/Striatum"><font color="#0645ad">striatum</font></a> and <a title="Basal ganglia" href="/wiki/Basal_ganglia"><font color="#0645ad">basal ganglia</font></a>, dopamine is inactivated by <a title="Reuptake" href="/wiki/Reuptake"><font color="#0645ad">reuptake</font></a> via the <a title="Dopamine transporter" href="/wiki/Dopamine_transporter"><font color="#0645ad">dopamine transporter</font></a> (DAT1), then enzymatic breakdown by <a title="Monoamine oxidase" href="/wiki/Monoamine_oxidase"><font color="#0645ad">monoamine oxidase</font></a> (<a class="mw-redirect" title="MAOA" href="/wiki/MAOA"><font color="#0645ad">MAOA</font></a> and <a class="mw-redirect" title="MAOB" href="/wiki/MAOB"><font color="#0645ad">MAOB</font></a>) into <a class="mw-redirect" title="3,4-dihydroxyphenylacetic acid" href="/wiki/3,4-dihydroxyphenylacetic_acid"><font color="#0645ad">3,4-dihydroxyphenylacetic acid</font></a>. In the prefrontal cortex, however, there are very few dopamine transporter proteins, and dopamine is instead inactivated by reuptake via the <a title="Norepinephrine transporter" href="/wiki/Norepinephrine_transporter"><font color="#0645ad">norepinephrine transporter</font></a> (NET), presumably on neighboring norepinephrine neurons, then enzymatic breakdown by <a title="Catechol-O-methyl transferase" href="/wiki/Catechol-O-methyl_transferase"><font color="#0645ad">catechol-<em>O</em>-methyl transferase</font></a> (COMT) into <a class="mw-redirect" title="3-methoxytyramine" href="/wiki/3-methoxytyramine"><font color="#0645ad">3-methoxytyramine</font></a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><font size="2"><font color="#0645ad"><span>[</span>4<span>]</span></font></font></a></sup> The DAT1 pathway is roughly an order of magnitude faster than the NET pathway: in mice, dopamine concentrations decay with a half-life of 200 ms in the caudate nucleus (which uses the DAT1 pathway) versus 2,000 ms in the prefrontal cortex.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><font size="2"><font color="#0645ad"><span>[</span>5<span>]</span></font></font></a></sup> Dopamine that is not broken down by enzymes is repackaged into vesicles for reuse by <a class="mw-redirect" title="VMAT2" href="/wiki/VMAT2"><font color="#0645ad">VMAT2</font></a>.</p>
<div style="CLEAR: both"></div>
<h2><span class="editsection">[<a title="Edit section: Functions in the brain" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=6"><font color="#0645ad">edit</font></a>]</span> <span id="Functions_in_the_brain" class="mw-headline">Functions in the brain</span></h2>
<p>Dopamine has many functions in the brain, including important roles in behavior and <a title="Cognition" href="/wiki/Cognition"><font color="#0645ad">cognition</font></a>, <a title="Animal locomotion" href="/wiki/Animal_locomotion"><font color="#0645ad">voluntary movement</font></a>, <a title="Motivation" href="/wiki/Motivation"><font color="#0645ad">motivation</font></a>, <a title="Punishment" href="/wiki/Punishment"><font color="#0645ad">punishment</font></a> and <a title="Reward system" href="/wiki/Reward_system"><font color="#0645ad">reward</font></a>, inhibition of <a title="Prolactin" href="/wiki/Prolactin"><font color="#0645ad">prolactin</font></a> production (involved in <a title="Lactation" href="/wiki/Lactation"><font color="#0645ad">lactation</font></a> and <a title="Prolactin" href="/wiki/Prolactin#Effects"><font color="#0645ad">sexual gratification</font></a>), <a title="Sleep" href="/wiki/Sleep"><font color="#0645ad">sleep</font></a>, <a title="Mood (psychology)" href="/wiki/Mood_(psychology)"><font color="#0645ad">mood</font></a>, <a title="Attention" href="/wiki/Attention"><font color="#0645ad">attention</font></a>, <a title="Working memory" href="/wiki/Working_memory"><font color="#0645ad">working memory</font></a>, and <a title="Learning" href="/wiki/Learning"><font color="#0645ad">learning</font></a>. Dopaminergic neurons (i.e., neurons whose primary neurotransmitter is dopamine) are present chiefly in the <a title="Ventral tegmental area" href="/wiki/Ventral_tegmental_area"><font color="#0645ad">ventral tegmental area</font></a> (VTA) of the <a title="Midbrain" href="/wiki/Midbrain"><font color="#0645ad">midbrain</font></a>, the <a title="Substantia nigra" href="/wiki/Substantia_nigra"><font color="#0645ad">substantia nigra pars compacta</font></a>, and the <a title="Arcuate nucleus" href="/wiki/Arcuate_nucleus"><font color="#0645ad">arcuate nucleus</font></a> of the hypothalamus.</p>
<p>It has been hypothesized that dopamine transmits reward prediction error, although this has been questioned.<sup id="cite_ref-dopamine_function_5-0" class="reference"><a href="#cite_note-dopamine_function-5"><font size="2"><font color="#0645ad"><span>[</span>6<span>]</span></font></font></a></sup> According to this hypothesis, the phasic responses of dopamine neurons are observed when an unexpected reward is presented. These responses transfer to the onset of a <a title="Classical conditioning" href="/wiki/Classical_conditioning"><font color="#0645ad">conditioned stimulus</font></a> after repeated pairings with the reward. Further, dopamine neurons are depressed when the expected reward is omitted. Thus, dopamine neurons seem to <a class="mw-redirect" title="Neural encoding" href="/wiki/Neural_encoding"><font color="#0645ad">encode</font></a> the prediction error of rewarding outcomes. In nature, we learn to repeat behaviors that lead to maximizing rewards. Dopamine is therefore believed to provide a teaching signal to parts of the brain responsible for acquiring new behavior. <a title="Temporal difference learning" href="/wiki/Temporal_difference_learning"><font color="#0645ad">Temporal difference learning</font></a> provides a computational model describing how the prediction error of dopamine neurons is used as a teaching signal.</p>
<p>The reward system in insects uses <a title="Octopamine" href="/wiki/Octopamine"><font color="#0645ad">octopamine</font></a>, which is the presumed arthropod homolog of <a title="Norepinephrine" href="/wiki/Norepinephrine"><font color="#0645ad">norepinephrine</font></a>,<sup id="cite_ref-octopamine-honeybee_6-0" class="reference"><a href="#cite_note-octopamine-honeybee-6"><font size="2"><font color="#0645ad"><span>[</span>7<span>]</span></font></font></a></sup> rather than dopamine. In insects, dopamine acts instead as a punishment signal and is necessary to form aversive memories.<sup id="cite_ref-pmid14627633_7-0" class="reference"><a href="#cite_note-pmid14627633-7"><font size="2"><font color="#0645ad"><span>[</span>8<span>]</span></font></font></a></sup><sup id="cite_ref-pmid19521527_8-0" class="reference"><a href="#cite_note-pmid19521527-8"><font size="2"><font color="#0645ad"><span>[</span>9<span>]</span></font></font></a></sup></p>
<h3><span class="editsection">[<a title="Edit section: Anatomy" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=7"><font color="#0645ad">edit</font></a>]</span> <span id="Anatomy" class="mw-headline">Anatomy</span></h3>
<div class="rellink relarticle mainarticle">Main article: <a title="Dopaminergic pathways" href="/wiki/Dopaminergic_pathways"><font color="#0645ad">Dopaminergic pathways</font></a></div>
<p><a title="Dopaminergic" href="/wiki/Dopaminergic"><font color="#0645ad">Dopaminergic</font></a> neurons form a <a class="mw-redirect" title="Neurotransmitter system" href="/wiki/Neurotransmitter_system"><font color="#0645ad">neurotransmitter system</font></a> which originates in <a class="mw-redirect" title="Substantia nigra pars compacta" href="/wiki/Substantia_nigra_pars_compacta"><font color="#0645ad">substantia nigra pars compacta</font></a>, <a title="Ventral tegmental area" href="/wiki/Ventral_tegmental_area"><font color="#0645ad">ventral tegmental area</font></a> (VTA), and <a title="Hypothalamus" href="/wiki/Hypothalamus"><font color="#0645ad">hypothalamus</font></a>. These project <a title="Axon" href="/wiki/Axon"><font color="#0645ad">axons</font></a> to large areas of the brain which are typically divided into four major pathways:</p>
<ul>
<li><a title="Mesocortical pathway" href="/wiki/Mesocortical_pathway"><font color="#0645ad">Mesocortical pathway</font></a> connects the ventral tegmental area to the frontal lobe of the <a class="mw-redirect" title="Pre-frontal cortex" href="/wiki/Pre-frontal_cortex"><font color="#0645ad">pre-frontal cortex</font></a>. Neurons with <a title="Soma (biology)" href="/wiki/Soma_(biology)"><font color="#0645ad">somas</font></a> in the ventral tegmental area project axons into the pre-frontal cortex.</li> <li><a title="Mesolimbic pathway" href="/wiki/Mesolimbic_pathway"><font color="#0645ad">Mesolimbic pathway</font></a> carries dopamine from the ventral tegmental area to the <a title="Nucleus accumbens" href="/wiki/Nucleus_accumbens"><font color="#0645ad">nucleus accumbens</font></a> via the <a title="Amygdala" href="/wiki/Amygdala"><font color="#0645ad">amygdala</font></a> and <a title="Hippocampus" href="/wiki/Hippocampus"><font color="#0645ad">hippocampus</font></a>. The somas of the projecting neurons are in the ventral tegmental area.</li> <li><a title="Nigrostriatal pathway" href="/wiki/Nigrostriatal_pathway"><font color="#0645ad">Nigrostriatal pathway</font></a> runs from the substantia nigra to the <a class="mw-redirect" title="Neostriatum" href="/wiki/Neostriatum"><font color="#0645ad">neostriatum</font></a>. Somas in the substantia nigra project axons into the <a title="Caudate nucleus" href="/wiki/Caudate_nucleus"><font color="#0645ad">caudate nucleus</font></a> and <a title="Putamen" href="/wiki/Putamen"><font color="#0645ad">putamen</font></a>. The pathway is involved in the basal ganglia motor loop.</li> <li><a title="Tuberoinfundibular pathway" href="/wiki/Tuberoinfundibular_pathway"><font color="#0645ad">Tuberoinfundibular pathway</font></a> runs from the hypothalamus to the pituitary gland.</li></ul><p>This innervation explains many of the effects of activating this dopamine system. For instance, the <a title="Mesolimbic pathway" href="/wiki/Mesolimbic_pathway"><font color="#0645ad">mesolimbic pathway</font></a> connects the VTA and <a title="Nucleus accumbens" href="/wiki/Nucleus_accumbens"><font color="#0645ad">nucleus accumbens</font></a>; both are central to the brain <a title="Reward system" href="/wiki/Reward_system"><font color="#0645ad">reward system</font></a>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><font size="2"><font color="#0645ad"><span>[</span>10<span>]</span></font></font></a></sup></p><p>Whilst the distinction between pathways is widely used, and is regarded as a &ldquo;convenient heuristic when considering the dopamine system&rdquo;, it is not absolute, and there is some overlap in the projection targets of each group of neurons.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><font size="2"><font color="#0645ad"><span>[</span>11<span>]</span></font></font></a></sup></p><h3><span class="editsection">[<a title="Edit section: Tonic and phasic activity" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=8"><font color="#0645ad">edit</font></a>]</span> <span id="Tonic_and_phasic_activity" class="mw-headline">Tonic and phasic activity</span></h3><p>The level of extracellular dopamine is modulated by two mechanisms, tonic and phasic dopamine transmission. Tonic dopamine transmission occurs when small amounts of dopamine are released independently of neuronal activity, and is regulated by the activity of other neurons and neurotransmitter reuptake.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><font size="2"><font color="#0645ad"><span>[</span>12<span>]</span></font></font></a></sup> Phasic dopamine release results from the activity of the dopamine-containing cells themselves. This activity is characterized by irregular <a title="Pacemaker action potential" href="/wiki/Pacemaker_action_potential"><font color="#0645ad">pacemaking</font></a> activity of single spikes, and rapid bursts of typically 2-6 spikes in quick succession.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><font size="2"><font color="#0645ad"><span>[</span>13<span>]</span></font></font></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><font size="2"><font color="#0645ad"><span>[</span>14<span>]</span></font></font></a></sup> Concentrated bursts of activity result in a greater increase of extracellular dopamine levels than would be expected from the same number of spikes distributed over a longer period of time.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><font size="2"><font color="#0645ad"><span>[</span>15<span>]</span></font></font></a></sup></p><h3><span class="editsection">[<a title="Edit section: Movement" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=9"><font color="#0645ad">edit</font></a>]</span> <span id="Movement" class="mw-headline">Movement</span></h3><p>Via the <a title="Dopamine receptor" href="/wiki/Dopamine_receptor"><font color="#0645ad">dopamine receptors</font></a>, D<sub><font size="2">1-5</font></sub>, dopamine reduces the influence of the indirect pathway, and increases the actions of the direct pathway within the <a title="Basal ganglia" href="/wiki/Basal_ganglia"><font color="#0645ad">basal ganglia</font></a>. Insufficient dopamine <a title="Biosynthesis" href="/wiki/Biosynthesis"><font color="#0645ad">biosynthesis</font></a> in the dopaminergic neurons can cause <a title="Parkinson's disease" href="/wiki/Parkinson%27s_disease"><font color="#0645ad">Parkinson's disease</font></a>, in which a person loses the ability to execute smooth, controlled movements.</p><h3><span class="editsection">[<a title="Edit section: Cognition and frontal cortex" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=10"><font color="#0645ad">edit</font></a>]</span> <span id="Cognition_and_frontal_cortex" class="mw-headline">Cognition and frontal cortex</span></h3><p>In the <a title="Frontal lobe" href="/wiki/Frontal_lobe"><font color="#0645ad">frontal lobes</font></a>, dopamine controls the flow of information from other areas of the brain. Dopamine disorders in this region of the brain can cause a decline in <a title="Neurocognitive" href="/wiki/Neurocognitive"><font color="#0645ad">neurocognitive</font></a> functions, especially <a title="Memory" href="/wiki/Memory"><font color="#0645ad">memory</font></a>, <a title="Attention" href="/wiki/Attention"><font color="#0645ad">attention</font></a>, and <a class="mw-redirect" title="Problem-solving" href="/wiki/Problem-solving"><font color="#0645ad">problem-solving</font></a>. Reduced dopamine concentrations in the prefrontal cortex are thought to contribute to <a class="mw-redirect" title="Attention deficit disorder" href="/wiki/Attention_deficit_disorder"><font color="#0645ad">attention deficit disorder</font></a>. It has been found that D1 receptors<sup id="cite_ref-Inhibitorydopamine_15-0" class="reference"><a href="#cite_note-Inhibitorydopamine-15"><font size="2"><font color="#0645ad"><span>[</span>16<span>]</span></font></font></a></sup> as well as D4 receptors<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><font size="2"><font color="#0645ad"><span>[</span>17<span>]</span></font></font></a></sup> are responsible for the cognitive-enhancing effects of dopamine.</p><h3><span class="editsection">[<a title="Edit section: Regulating prolactin secretion" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=11"><font color="#0645ad">edit</font></a>]</span> <span id="Regulating_prolactin_secretion" class="mw-headline">Regulating prolactin secretion</span></h3><p>Dopamine is the primary <a class="mw-redirect" title="Neuroendocrine" href="/wiki/Neuroendocrine"><font color="#0645ad">neuroendocrine</font></a> inhibitor of the secretion of <a title="Prolactin" href="/wiki/Prolactin"><font color="#0645ad">prolactin</font></a> from the <a title="Anterior pituitary" href="/wiki/Anterior_pituitary"><font color="#0645ad">anterior pituitary</font></a> gland.<sup id="cite_ref-prolactininhibition_17-0" class="reference"><a href="#cite_note-prolactininhibition-17"><font size="2"><font color="#0645ad"><span>[</span>18<span>]</span></font></font></a></sup> Dopamine produced by neurons in the <a title="Arcuate nucleus" href="/wiki/Arcuate_nucleus"><font color="#0645ad">arcuate nucleus</font></a> of the hypothalamus is secreted into the hypothalamo-hypophysial blood vessels of the <a title="Median eminence" href="/wiki/Median_eminence"><font color="#0645ad">median eminence</font></a>, which supply the <a title="Pituitary gland" href="/wiki/Pituitary_gland"><font color="#0645ad">pituitary gland</font></a>. The lactotrope cells that produce <a title="Prolactin" href="/wiki/Prolactin"><font color="#0645ad">prolactin</font></a>, in the absence of dopamine, secrete prolactin continuously; dopamine inhibits this secretion. Thus, in the context of regulating prolactin secretion, dopamine is occasionally called <strong>prolactin-inhibiting factor</strong> (<strong>PIF</strong>), <strong>prolactin-inhibiting hormone</strong> (<strong>PIH</strong>), or <strong>prolactostatin</strong>.</p><h3><span class="editsection">[<a title="Edit section: Motivation and pleasure" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=12"><font color="#0645ad">edit</font></a>]</span> <span id="Motivation_and_pleasure" class="mw-headline">Motivation and pleasure</span></h3><div class="thumb tright"><div style="WIDTH: 222px" class="thumbinner"><a class="image" href="/wiki/File:Dopamine_Pathways.png"><img class="thumbimage" alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/5/51/Dopamine_Pathways.png/220px-Dopamine_Pathways.png" width="220" height="163" /></a><div class="thumbcaption"><div class="magnify"><a class="internal" title="Enlarge" href="/wiki/File:Dopamine_Pathways.png"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png" width="15" height="11" /></a></div>Dopamine Pathways. In the brain, dopamine plays an important role in the regulation of reward and movement. As part of the reward pathway, dopamine is manufactured in nerve cell bodies located within the ventral tegmental area (VTA) and is released in the nucleus accumbens and the prefrontal cortex. Its motor functions are linked to a separate pathway, with cell bodies in the substantia nigra that manufacture and release dopamine into the striatum.</div></div></div><div class="rellink">Further information: <a title="Motivation" href="/wiki/Motivation"><font color="#0645ad">Motivation</font></a></div><h4><span class="editsection">[<a title="Edit section: Reinforcement" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=13"><font color="#0645ad">edit</font></a>]</span> <span id="Reinforcement" class="mw-headline">Reinforcement</span></h4><p>Dopamine is commonly associated with the <a title="Reward system" href="/wiki/Reward_system"><font color="#0645ad">reward system</font></a> of the brain, providing feelings of enjoyment and <a title="Reinforcement" href="/wiki/Reinforcement"><font color="#0645ad">reinforcement</font></a> to motivate a person proactively to perform certain activities. Dopamine is released (particularly in areas such as the <a title="Nucleus accumbens" href="/wiki/Nucleus_accumbens"><font color="#0645ad">nucleus accumbens</font></a> and <a title="Prefrontal cortex" href="/wiki/Prefrontal_cortex"><font color="#0645ad">prefrontal cortex</font></a>) by <a title="Reward system" href="/wiki/Reward_system"><font color="#0645ad">rewarding</font></a> experiences such as <a title="Food" href="/wiki/Food"><font color="#0645ad">food</font></a>, <a class="mw-redirect" title="Human sexual behaviour" href="/wiki/Human_sexual_behaviour"><font color="#0645ad">sex</font></a>, <a class="mw-redirect" title="Drugs" href="/wiki/Drugs"><font color="#0645ad">drugs</font></a>, and <a title="Neutral stimulus" href="/wiki/Neutral_stimulus"><font color="#0645ad">neutral stimuli</font></a> that become <a title="Classical conditioning" href="/wiki/Classical_conditioning"><font color="#0645ad">associated</font></a> with them. Recent studies indicate that <a title="Aggression" href="/wiki/Aggression"><font color="#0645ad">aggression</font></a> may also stimulate the release of dopamine in this way.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><font size="2"><font color="#0645ad"><span>[</span>19<span>]</span></font></font></a></sup></p><p>This theory is often discussed in terms of drugs such as <a title="Cocaine" href="/wiki/Cocaine"><font color="#0645ad">cocaine</font></a>, <a title="Nicotine" href="/wiki/Nicotine"><font color="#0645ad">nicotine</font></a>, and <a title="Amphetamine" href="/wiki/Amphetamine"><font color="#0645ad">amphetamines</font></a>, which directly or indirectly lead to an increase of dopamine in the <a title="Mesolimbic pathway" href="/wiki/Mesolimbic_pathway"><font color="#0645ad">mesolimbic reward pathway</font></a> of the brain, and in relation to <a class="mw-redirect" title="Neurobiology" href="/wiki/Neurobiology"><font color="#0645ad">neurobiological</font></a> theories of <a title="Physical dependence" href="/wiki/Physical_dependence"><font color="#0645ad">chemical addiction</font></a> (not to be confused with <a title="Substance dependence" href="/wiki/Substance_dependence"><font color="#0645ad">psychological dependence</font></a>), arguing that this <a title="Dopaminergic pathways" href="/wiki/Dopaminergic_pathways"><font color="#0645ad">dopamine pathway</font></a> is pathologically altered in addicted persons.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><font size="2"><font color="#0645ad"><span>[</span>20<span>]</span></font></font></a></sup><sup id="cite_ref-PMID11805404_20-0" class="reference"><a href="#cite_note-PMID11805404-20"><font size="2"><font color="#0645ad"><span>[</span>21<span>]</span></font></font></a></sup><sup id="cite_ref-PMID11477488_21-0" class="reference"><a href="#cite_note-PMID11477488-21"><font size="2"><font color="#0645ad"><span>[</span>22<span>]</span></font></font></a></sup></p><h4><span class="editsection">[<a title="Edit section: Reuptake inhibition, expulsion" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=14"><font color="#0645ad">edit</font></a>]</span> <span id="Reuptake_inhibition.2C_expulsion" class="mw-headline">Reuptake inhibition, expulsion</span></h4><p>Cocaine and amphetamines inhibit the <a class="mw-redirect" title="Re-uptake" href="/wiki/Re-uptake"><font color="#0645ad">re-uptake</font></a> of dopamine; however, they influence separate mechanisms of action. Cocaine is a <a title="Dopamine transporter" href="/wiki/Dopamine_transporter"><font color="#0645ad">dopamine transporter</font></a> and <a title="Norepinephrine transporter" href="/wiki/Norepinephrine_transporter"><font color="#0645ad">norepinephrine transporter</font></a> blocker that competitively inhibits dopamine uptake to increase the lifetime of dopamine and augments an overabundance of dopamine (an increase of up to 150 percent) within the parameters of the dopamine neurotransmitters. Like cocaine, amphetamines increase the concentration of dopamine in the <a title="Synapse" href="/wiki/Synapse"><font color="#0645ad">synaptic</font></a> gap, but by a different mechanism. Amphetamines and <a title="Methamphetamine" href="/wiki/Methamphetamine"><font color="#0645ad">methamphetamine</font></a> are similar in structure to dopamine, and so can enter the terminal bouton of the presynaptic neuron via its dopamine transporters as well as by diffusing through the neural membrane directly.<sup style="WHITE-SPACE: nowrap" class="Template-Fact" title="This claim needs references to reliable sources from April 2010"><font size="2">[<em><a title="Wikipedia:Citation needed" href="/wiki/Wikipedia:Citation_needed"><font color="#0645ad">citation needed</font></a></em>]</font></sup> By entering the presynaptic neuron, amphetamines force dopamine molecules out of their storage <a title="Synaptic vesicle" href="/wiki/Synaptic_vesicle"><font color="#0645ad">vesicles</font></a> and expel them into the synaptic gap by making the dopamine transporters work in reverse.</p><h4><span class="editsection">[<a title="Edit section: Incentive salience" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=15"><font color="#0645ad">edit</font></a>]</span> <span id="Incentive_salience" class="mw-headline">Incentive salience</span></h4><div class="rellink relarticle mainarticle">Main article: <a title="Incentive salience" href="/wiki/Incentive_salience"><font color="#0645ad">Incentive salience</font></a></div><p>Dopamine's role in experiencing pleasure has been questioned by several researchers. It has been argued that dopamine is more associated with anticipatory desire and motivation (commonly referred to as &quot;wanting&quot;) as opposed to actual consummatory pleasure (commonly referred to as &quot;liking&quot;).</p><h4><span class="editsection">[<a title="Edit section: Dopamine, learning, and reward-seeking behavior" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=16"><font color="#0645ad">edit</font></a>]</span> <span id="Dopamine.2C_learning.2C_and_reward-seeking_behavior" class="mw-headline">Dopamine, learning, and reward-seeking behavior</span></h4><p>Dopaminergic neurons of the midbrain are the main source of dopamine in the brain.<sup id="cite_ref-fn5_22-0" class="reference"><a href="#cite_note-fn5-22"><font size="2"><font color="#0645ad"><span>[</span>23<span>]</span></font></font></a></sup> Dopamine has been shown to be involved in the control of movements, the signaling of error in prediction of reward, motivation, and cognition. Cerebral dopamine depletion is the hallmark of Parkinson's disease.<sup id="cite_ref-fn5_22-1" class="reference"><a href="#cite_note-fn5-22"><font size="2"><font color="#0645ad"><span>[</span>23<span>]</span></font></font></a></sup> Other pathological states have also been associated with dopamine dysfunction, such as schizophrenia, autism, and attention deficit hyperactivity disorder, as well as drug abuse.</p><p>Dopamine is closely associated with reward-seeking behaviors, such as approach, consumption, and addiction.<sup id="cite_ref-fn5_22-2" class="reference"><a href="#cite_note-fn5-22"><font size="2"><font color="#0645ad"><span>[</span>23<span>]</span></font></font></a></sup> Recent researches suggest that the firing of dopaminergic neurons is a motivational substance as a consequence of reward-anticipation. This hypothesis is based on the evidence that, when a reward is greater than expected, the firing of certain dopaminergic neurons increases, which consequently increases desire or motivation towards the reward.<sup id="cite_ref-fn5_22-3" class="reference"><a href="#cite_note-fn5-22"><font size="2"><font color="#0645ad"><span>[</span>23<span>]</span></font></font></a></sup> However, recent research finds that while some dopaminergic neurons react in the way expected of reward neurons, others do not and seem to respond in regard to unpredictability.<sup id="cite_ref-Matsumoto_23-0" class="reference"><a href="#cite_note-Matsumoto-23"><font size="2"><font color="#0645ad"><span>[</span>24<span>]</span></font></font></a></sup> This research finds the reward neurons predominate in the ventromedial region in the <a class="mw-redirect" title="Substantia nigra pars compacta" href="/wiki/Substantia_nigra_pars_compacta"><font color="#0645ad">substantia nigra pars compacta</font></a> as well as the <a title="Ventral tegmental area" href="/wiki/Ventral_tegmental_area"><font color="#0645ad">ventral tegmental area</font></a>. Neurons in these areas project mainly to the <a title="Ventral striatum" href="/wiki/Ventral_striatum"><font color="#0645ad">ventral striatum</font></a> and thus might transmit value-related information in regard to reward values.<sup id="cite_ref-Matsumoto_23-1" class="reference"><a href="#cite_note-Matsumoto-23"><font size="2"><font color="#0645ad"><span>[</span>24<span>]</span></font></font></a></sup> The nonreward neurons are predominate in the dorsolateral area of the substantia nigra pars compacta which projects to the <a class="mw-redirect" title="Dorsal striatum" href="/wiki/Dorsal_striatum"><font color="#0645ad">dorsal striatum</font></a> and may relate to orienting behaviour.<sup id="cite_ref-Matsumoto_23-2" class="reference"><a href="#cite_note-Matsumoto-23"><font size="2"><font color="#0645ad"><span>[</span>24<span>]</span></font></font></a></sup> It has been suggested that the difference between these two types of dopaminergic neurons arises from their input: reward-linked ones have input from the <a title="Basal forebrain" href="/wiki/Basal_forebrain"><font color="#0645ad">basal forebrain</font></a> while the nonreward-related ones from the <a title="Habenula" href="/wiki/Habenula#Lateral_habenula"><font color="#0645ad">lateral habenula</font></a>.<sup id="cite_ref-Matsumoto_23-3" class="reference"><a href="#cite_note-Matsumoto-23"><font size="2"><font color="#0645ad"><span>[</span>24<span>]</span></font></font></a></sup></p><h4><span class="editsection">[<a title="Edit section: Animal studies" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=17"><font color="#0645ad">edit</font></a>]</span> <span id="Animal_studies" class="mw-headline">Animal studies</span></h4><p>Clues to dopamine's role in motivation, desire, and pleasure have come from studies performed on animals. In one such study, rats were depleted of dopamine by up to 99 percent in the <a title="Nucleus accumbens" href="/wiki/Nucleus_accumbens"><font color="#0645ad">nucleus accumbens</font></a> and <a class="mw-redirect" title="Neostriatum" href="/wiki/Neostriatum"><font color="#0645ad">neostriatum</font></a> using 6-hydroxydopamine.<sup id="cite_ref-fn5_22-4" class="reference"><a href="#cite_note-fn5-22"><font size="2"><font color="#0645ad"><span>[</span>23<span>]</span></font></font></a></sup> With this large reduction in dopamine, the rats would no longer eat by their own volition. The researchers then force-fed the rats food and noted whether they had the proper facial expressions indicating whether they liked or disliked it. The researchers of this study concluded that the reduction in dopamine did not reduce the rat's consummatory pleasure, only the desire to actually eat. In another study, mutant hyperdopaminergic (increased dopamine) mice show higher &quot;wanting&quot; but not &quot;liking&quot; of sweet rewards.<sup id="cite_ref-fn1_24-0" class="reference"><a href="#cite_note-fn1-24"><font size="2"><font color="#0645ad"><span>[</span>25<span>]</span></font></font></a></sup></p><h4><span class="editsection">[<a title="Edit section: The effects of drugs that reduce dopamine activity" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=18"><font color="#0645ad">edit</font></a>]</span> <span id="The_effects_of_drugs_that_reduce_dopamine_activity" class="mw-headline">The effects of drugs that reduce dopamine activity</span></h4><p>In humans, drugs that reduce dopamine activity (<a class="mw-redirect" title="Neuroleptic" href="/wiki/Neuroleptic"><font color="#0645ad">neuroleptics</font></a>, e.g. <a title="Antipsychotic" href="/wiki/Antipsychotic"><font color="#0645ad">antipsychotics</font></a>) have been shown to reduce motivation, cause <a title="Anhedonia" href="/wiki/Anhedonia"><font color="#0645ad">anhedonia</font></a> (inability to experience pleasure), and long-term use has been associated with the irreversible movement disorder, <a title="Tardive dyskinesia" href="/wiki/Tardive_dyskinesia"><font color="#0645ad">tardive dyskinesia</font></a>.<sup id="cite_ref-fn2_25-0" class="reference"><a href="#cite_note-fn2-25"><font size="2"><font color="#0645ad"><span>[</span>26<span>]</span></font></font></a></sup> Furthermore, antipsychotic drugs are associated with <a title="Weight gain" href="/wiki/Weight_gain"><font color="#0645ad">weight gain</font></a>, <a class="mw-redirect" title="Diabetes" href="/wiki/Diabetes"><font color="#0645ad">diabetes</font></a>, <a title="Lactation" href="/wiki/Lactation"><font color="#0645ad">lactation</font></a>, <a title="Gynecomastia" href="/wiki/Gynecomastia"><font color="#0645ad">gynecomastia</font></a>, <a title="Drooling" href="/wiki/Drooling"><font color="#0645ad">drooling</font></a>, <a title="Dysphoria" href="/wiki/Dysphoria"><font color="#0645ad">dysphoria</font></a>, <a title="Fatigue (medical)" href="/wiki/Fatigue_(medical)"><font color="#0645ad">fatigue</font></a>, <a title="Sexual dysfunction" href="/wiki/Sexual_dysfunction"><font color="#0645ad">sexual dysfunction</font></a>, and <a class="mw-redirect" title="Heart rhythm" href="/wiki/Heart_rhythm"><font color="#0645ad">heart rhythm</font></a> problems. Selective D2/D3 agonists <a title="Pramipexole" href="/wiki/Pramipexole"><font color="#0645ad">pramipexole</font></a> and <a title="Ropinirole" href="/wiki/Ropinirole"><font color="#0645ad">ropinirole</font></a>, used to treat <a title="Restless legs syndrome" href="/wiki/Restless_legs_syndrome"><font color="#0645ad">restless legs syndrome</font></a> (RLS), have limited anti-anhedonic properties as measured by the Snaith-Hamilton Pleasure Scale (SHAPS).<sup id="cite_ref-fn3_26-0" class="reference"><a href="#cite_note-fn3-26"><font size="2"><font color="#0645ad"><span>[</span>27<span>]</span></font></font></a></sup></p><h4><span class="editsection">[<a title="Edit section: Opioid and cannabinoid transmission" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=19"><font color="#0645ad">edit</font></a>]</span> <span id="Opioid_and_cannabinoid_transmission" class="mw-headline">Opioid and cannabinoid transmission</span></h4><p><a title="Opioid" href="/wiki/Opioid"><font color="#0645ad">Opioid</font></a> and <a title="Cannabinoid" href="/wiki/Cannabinoid"><font color="#0645ad">cannabinoid</font></a> transmission instead of dopamine may modulate consummatory pleasure and food palatability (liking).<sup id="cite_ref-fn4_27-0" class="reference"><a href="#cite_note-fn4-27"><font size="2"><font color="#0645ad"><span>[</span>28<span>]</span></font></font></a></sup> This could explain why animals' &quot;liking&quot; of food is independent of brain dopamine concentration. Other consummatory pleasures, however, may be more associated with dopamine. One study found that both anticipatory and consummatory measures of sexual behavior (male rats) were disrupted by DA receptor antagonists.<sup id="cite_ref-fn6_28-0" class="reference"><a href="#cite_note-fn6-28"><font size="2"><font color="#0645ad"><span>[</span>29<span>]</span></font></font></a></sup> Libido can be increased by drugs that affect dopamine, but not by drugs that affect opioid peptides or other neurotransmitters.</p><h4><span class="editsection">[<a title="Edit section: Sociability" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=20"><font color="#0645ad">edit</font></a>]</span> <span id="Sociability" class="mw-headline">Sociability</span></h4><p>Sociability is also closely tied to dopamine neurotransmission. Low D2 receptor-binding is found in people with <a title="Social anxiety" href="/wiki/Social_anxiety"><font color="#0645ad">social anxiety</font></a>. Traits common to negative <a title="Schizophrenia" href="/wiki/Schizophrenia"><font color="#0645ad">schizophrenia</font></a> (<a class="mw-redirect" title="Social withdrawal" href="/wiki/Social_withdrawal"><font color="#0645ad">social withdrawal</font></a>, <a title="Apathy" href="/wiki/Apathy"><font color="#0645ad">apathy</font></a>, <a title="Anhedonia" href="/wiki/Anhedonia"><font color="#0645ad">anhedonia</font></a>) are thought to be related to a hypodopaminergic state in certain areas of the brain. In instances of <a title="Bipolar disorder" href="/wiki/Bipolar_disorder"><font color="#0645ad">bipolar disorder</font></a>, <a title="Manic" href="/wiki/Manic"><font color="#0645ad">manic</font></a> subjects can become hypersocial, as well as <a class="mw-redirect" title="Hypersexual" href="/wiki/Hypersexual"><font color="#0645ad">hypersexual</font></a>.<sup style="WHITE-SPACE: nowrap" class="Template-Fact" title="This claim needs references to reliable sources from May 2010"><font size="2">[<em><a title="Wikipedia:Citation needed" href="/wiki/Wikipedia:Citation_needed"><font color="#0645ad">citation needed</font></a></em>]</font></sup> This is credited to an increase in dopamine, because mania can be reduced by dopamine-blocking anti-psychotics.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><font size="2"><font color="#0645ad"><span>[</span>30<span>]</span></font></font></a></sup></p><h4><span class="editsection">[<a title="Edit section: Processing of pain" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=21"><font color="#0645ad">edit</font></a>]</span> <span id="Processing_of_pain" class="mw-headline">Processing of pain</span></h4><p>Dopamine has been demonstrated to play a role in <a title="Pain" href="/wiki/Pain"><font color="#0645ad">pain</font></a> processing in multiple levels of the <a title="Central nervous system" href="/wiki/Central_nervous_system"><font color="#0645ad">central nervous system</font></a> including the <a title="Spinal cord" href="/wiki/Spinal_cord"><font color="#0645ad">spinal cord</font></a>,<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><font size="2"><font color="#0645ad"><span>[</span>31<span>]</span></font></font></a></sup> <a title="Periaqueductal gray" href="/wiki/Periaqueductal_gray"><font color="#0645ad">periaqueductal gray</font></a> (PAG),<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><font size="2"><font color="#0645ad"><span>[</span>32<span>]</span></font></font></a></sup> <a title="Thalamus" href="/wiki/Thalamus"><font color="#0645ad">thalamus</font></a>,<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><font size="2"><font color="#0645ad"><span>[</span>33<span>]</span></font></font></a></sup> <a title="Basal ganglia" href="/wiki/Basal_ganglia"><font color="#0645ad">basal ganglia</font></a>,<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><font size="2"><font color="#0645ad"><span>[</span>34<span>]</span></font></font></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><font size="2"><font color="#0645ad"><span>[</span>35<span>]</span></font></font></a></sup> <a title="Insular cortex" href="/wiki/Insular_cortex"><font color="#0645ad">insular cortex</font></a>,<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><font size="2"><font color="#0645ad"><span>[</span>36<span>]</span></font></font></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><font size="2"><font color="#0645ad"><span>[</span>37<span>]</span></font></font></a></sup> and <a title="Cingulate cortex" href="/wiki/Cingulate_cortex"><font color="#0645ad">cingulate cortex</font></a>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><font size="2"><font color="#0645ad"><span>[</span>38<span>]</span></font></font></a></sup> Accordingly, decreased levels of dopamine have been associated with painful symptoms that frequently occur in <a title="Parkinson's disease" href="/wiki/Parkinson%27s_disease"><font color="#0645ad">Parkinson's disease</font></a>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><font size="2"><font color="#0645ad"><span>[</span>39<span>]</span></font></font></a></sup> Abnormalities in dopaminergic neurotransmission have also been demonstrated in painful clinical conditions, including <a class="mw-redirect" title="Burning mouth syndrome" href="/wiki/Burning_mouth_syndrome"><font color="#0645ad">burning mouth syndrome</font></a>,<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><font size="2"><font color="#0645ad"><span>[</span>40<span>]</span></font></font></a></sup> <a title="Fibromyalgia" href="/wiki/Fibromyalgia"><font color="#0645ad">fibromyalgia</font></a>,<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><font size="2"><font color="#0645ad"><span>[</span>41<span>]</span></font></font></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><font size="2"><font color="#0645ad"><span>[</span>42<span>]</span></font></font></a></sup> and <a title="Restless legs syndrome" href="/wiki/Restless_legs_syndrome"><font color="#0645ad">restless legs syndrome</font></a>.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><font size="2"><font color="#0645ad"><span>[</span>43<span>]</span></font></font></a></sup> In general, the analgesic capacity of dopamine occurs as a result of dopamine D2 receptor activation; however, exceptions to this exist in the PAG, in which dopamine D1 receptor activation attenuates pain presumably <em>via</em> activation of neurons involved in descending inhibition.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><font size="2"><font color="#0645ad"><span>[</span>44<span>]</span></font></font></a></sup> In addition, D1 receptor activation in the insular cortex appears to attenuate subsequent pain-related behavior.</p><h4><span class="editsection">[<a title="Edit section: Salience" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=22"><font color="#0645ad">edit</font></a>]</span> <span id="Salience" class="mw-headline">Salience</span></h4><p>Dopamine may also have a role in the <a title="Salience (neuroscience)" href="/wiki/Salience_(neuroscience)"><font color="#0645ad">salience</font></a> of potentially important stimuli, such as sources of reward or of danger.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><font size="2"><font color="#0645ad"><span>[</span>45<span>]</span></font></font></a></sup> This hypothesis argues that dopamine assists decision-making by influencing the priority, or level of desire, of such stimuli to the person concerned.</p><h4><span class="editsection">[<a title="Edit section: Behavior disorders" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=23"><font color="#0645ad">edit</font></a>]</span> <span id="Behavior_disorders" class="mw-headline">Behavior disorders</span></h4><p>Deficient dopamine neurotransmission is implicated in <a class="mw-redirect" title="Attention-deficit hyperactivity disorder" href="/wiki/Attention-deficit_hyperactivity_disorder"><font color="#0645ad">attention-deficit hyperactivity disorder</font></a>, and stimulant medications used to successfully treat the disorder increase dopamine neurotransmission, leading to decreased symptoms.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><font size="2"><font color="#0645ad"><span>[</span>46<span>]</span></font></font></a></sup> Consistent with this hypothesis, dopaminergic pathways have a role in inhibitory action control and the inhibition of the tendency to make unwanted actions.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><font size="2"><font color="#0645ad"><span>[</span>47<span>]</span></font></font></a></sup></p><p>The long term use of <a class="mw-redirect" title="Levodopa" href="/wiki/Levodopa"><font color="#0645ad">levodopa</font></a> in <a title="Parkinson's disease" href="/wiki/Parkinson%27s_disease"><font color="#0645ad">Parkinson's disease</font></a> has been linked to <a title="Dopamine dysregulation syndrome" href="/wiki/Dopamine_dysregulation_syndrome"><font color="#0645ad">dopamine dysregulation syndrome</font></a>.<sup id="cite_ref-pmid17988927_47-0" class="reference"><a href="#cite_note-pmid17988927-47"><font size="2"><font color="#0645ad"><span>[</span>48<span>]</span></font></font></a></sup></p><h3><span class="editsection">[<a title="Edit section: Latent inhibition and creative drive" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=24"><font color="#0645ad">edit</font></a>]</span> <span id="Latent_inhibition_and_creative_drive" class="mw-headline">Latent inhibition and creative drive</span></h3><p>Dopamine in the <a title="Mesolimbic pathway" href="/wiki/Mesolimbic_pathway"><font color="#0645ad">mesolimbic pathway</font></a> increases general <a title="Arousal" href="/wiki/Arousal"><font color="#0645ad">arousal</font></a> and goal directed behaviors and decreases <a title="Latent inhibition" href="/wiki/Latent_inhibition"><font color="#0645ad">latent inhibition</font></a>; all three effects increase the creative drive of idea generation. This has led to a three-factor model of <a title="Creativity" href="/wiki/Creativity"><font color="#0645ad">creativity</font></a> involving the <a title="Frontal lobe" href="/wiki/Frontal_lobe"><font color="#0645ad">frontal lobes</font></a>, the <a title="Temporal lobe" href="/wiki/Temporal_lobe"><font color="#0645ad">temporal lobes</font></a>, and mesolimbic dopamine.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><font size="2"><font color="#0645ad"><span>[</span>49<span>]</span></font></font></a></sup></p><h3><span class="editsection">[<a title="Edit section: Chemoreceptor trigger zone" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=25"><font color="#0645ad">edit</font></a>]</span><span id="Chemoreceptor_trigger_zone" class="text13mw-headline">Chemoreceptor trigger zone</span></h3><p>Dopamine is one of the neurotransmitters implicated in the control of <a title="Nausea" href="/wiki/Nausea"><font color="#0645ad">nausea</font></a> and <a class="mw-redirect" title="Vomit" href="/wiki/Vomit"><font color="#0645ad">vomiting</font></a> via interactions in the <a title="Chemoreceptor trigger zone" href="/wiki/Chemoreceptor_trigger_zone"><font color="#0645ad">chemoreceptor trigger zone</font></a>. <a title="Metoclopramide" href="/wiki/Metoclopramide"><font color="#0645ad">Metoclopramide</font></a> is a D2-receptor antagonist that functions as a <a class="mw-redirect" title="Prokinetic" href="/wiki/Prokinetic"><font color="#0645ad">prokinetic</font></a>/<a title="Antiemetic" href="/wiki/Antiemetic"><font color="#0645ad">antiemetic</font></a>.</p><h3><span class="editsection">[<a title="Edit section: Dopaminergic mind hypothesis" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=26"><font color="#0645ad">edit</font></a>]</span> <span id="Dopaminergic_mind_hypothesis" class="mw-headline">Dopaminergic mind hypothesis</span></h3><p>The dopaminergic mind hypothesis seeks to explain the differences between modern humans and their hominid relatives by focusing on changes in dopamine.<sup id="cite_ref-Previc_49-0" class="reference"><a href="#cite_note-Previc-49"><font size="2"><font color="#0645ad"><span>[</span>50<span>]</span></font></font></a></sup> It theorizes that increased levels of dopamine were part of a general physiological adaptation due to an increased consumption of meat around two million years ago in <em><a title="Homo habilis" href="/wiki/Homo_habilis"><font color="#0645ad">Homo habilis</font></a></em>, and later enhanced by changes in diet and other environmental and social factors beginning approximately 80,000 years ago. Under this theory, the &quot;high-dopamine&quot; personality is characterized by high intelligence, a sense of personal destiny, a religious/cosmic preoccupation, an obsession with achieving goals and conquests, an emotional detachment that in many cases leads to ruthlessness, and a risk-taking mentality. High levels of dopamine are proposed to underlie increased psychological disorders in industrialized societies. According to this hypothesis, a &quot;dopaminergic society&quot; is an extremely goal-oriented, fast-paced, and even manic society, &quot;given that dopamine is known to increase activity levels, speed up our internal clocks and create a preference for novel over unchanging environments.&quot;<sup id="cite_ref-Previc_49-1" class="reference"><a href="#cite_note-Previc-49"><font size="2"><font color="#0645ad"><span>[</span>50<span>]</span></font></font></a></sup> In the same way that high-dopamine individuals lack empathy and exhibit a more masculine behavioral style, dopaminergic societies are &quot;typified by more conquest, competition, and aggression than nurturance and communality.&quot;<sup id="cite_ref-Previc_49-2" class="reference"><a href="#cite_note-Previc-49"><font size="2"><font color="#0645ad"><span>[</span>50<span>]</span></font></font></a></sup> Although behavioral evidence and some indirect anatomical evidence (e.g., enlargement of the dopamine-rich striatum in humans)<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><font size="2"><font color="#0645ad"><span>[</span>51<span>]</span></font></font></a></sup> support a dopaminergic expansion in humans, there is still no direct evidence that dopamine levels are markedly higher in humans relative to other apes.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><font size="2"><font color="#0645ad"><span>[</span>52<span>]</span></font></font></a></sup> However, recent discoveries about the sea-side settlements of early man may provide evidence of dietary changes consistent with this hypothesis.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><font size="2"><font color="#0645ad"><span>[</span>53<span>]</span></font></font></a></sup></p><h2><span class="editsection">[<a title="Edit section: Links to psychosis" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=27"><font color="#0645ad">edit</font></a>]</span> <span id="Links_to_psychosis" class="mw-headline">Links to psychosis</span></h2><div class="rellink relarticle mainarticle">Main article: <a title="Dopamine hypothesis of schizophrenia" href="/wiki/Dopamine_hypothesis_of_schizophrenia"><font color="#0645ad">Dopamine hypothesis of schizophrenia</font></a></div><p>Abnormally high dopaminergic transmission has been linked to <a title="Psychosis" href="/wiki/Psychosis"><font color="#0645ad">psychosis</font></a> and <a title="Schizophrenia" href="/wiki/Schizophrenia"><font color="#0645ad">schizophrenia</font></a>.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><font size="2"><font color="#0645ad"><span>[</span>54<span>]</span></font></font></a></sup> Increased dopaminergic functional activity, specifically in the <a title="Mesolimbic pathway" href="/wiki/Mesolimbic_pathway"><font color="#0645ad">mesolimbic pathway</font></a>, is found in schizophrenic individuals. <a class="mw-redirect" title="Anti-psychotic" href="/wiki/Anti-psychotic"><font color="#0645ad">Anti-psychotic</font></a> <a class="mw-redirect" title="Medication" href="/wiki/Medication"><font color="#0645ad">medications</font></a> act largely as dopamine antagonists, inhibiting dopamine at the <a title="Dopamine receptor" href="/wiki/Dopamine_receptor"><font color="#0645ad">receptor</font></a> level, and thereby blocking the effects of the neurochemical in a dose-dependant manner. The older, so-called <a class="mw-redirect" title="Typical antipsychotics" href="/wiki/Typical_antipsychotics"><font color="#0645ad">typical antipsychotics</font></a> most commonly act on D2 receptors,<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><font size="2"><font color="#0645ad"><span>[</span>55<span>]</span></font></font></a></sup> while the <a title="Atypical antipsychotic" href="/wiki/Atypical_antipsychotic"><font color="#0645ad">atypical drugs</font></a> also act on D1, D3 and D4 receptors.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><font size="2"><font color="#0645ad"><span>[</span>56<span>]</span></font></font></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><font size="2"><font color="#0645ad"><span>[</span>57<span>]</span></font></font></a></sup> The finding that drugs such as amphetamines, methamphetamine and cocaine, which can increase dopamine levels by more than tenfold,<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><font size="2"><font color="#0645ad"><span>[</span>58<span>]</span></font></font></a></sup> can temporarily cause psychosis, provides further evidence for this link.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><font size="2"><font color="#0645ad"><span>[</span>59<span>]</span></font></font></a></sup></p><h2><span class="editsection">[<a title="Edit section: Therapeutic use" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=28"><font color="#0645ad">edit</font></a>]</span> <span id="Therapeutic_use" class="mw-headline">Therapeutic use</span></h2><div class="rellink relarticle mainarticle">Main article: <a title="L-DOPA" href="/wiki/L-DOPA"><font color="#0645ad">L-DOPA</font></a></div><p><a title="L-DOPA" href="/wiki/L-DOPA"><font color="#0645ad">Levodopa</font></a> is a dopamine precursor used in various forms to treat <a title="Parkinson's disease" href="/wiki/Parkinson%27s_disease"><font color="#0645ad">Parkinson's disease</font></a> and dopa-responsive <a title="Dystonia" href="/wiki/Dystonia"><font color="#0645ad">dystonia</font></a>. It is typically co-administered with an inhibitor of peripheral decarboxylation (DDC, <a class="mw-redirect" title="Aromatic-L-amino-acid decarboxylase" href="/wiki/Aromatic-L-amino-acid_decarboxylase"><font color="#0645ad">dopa decarboxylase</font></a>), such as <a title="Carbidopa" href="/wiki/Carbidopa"><font color="#0645ad">carbidopa</font></a> or <a title="Benserazide" href="/wiki/Benserazide"><font color="#0645ad">benserazide</font></a>. Inhibitors of alternative metabolic route for dopamine by <a title="Catechol-O-methyl transferase" href="/wiki/Catechol-O-methyl_transferase"><font color="#0645ad">catechol-O-methyl transferase</font></a> are also used. These include <a title="Entacapone" href="/wiki/Entacapone"><font color="#0645ad">entacapone</font></a> and <a title="Tolcapone" href="/wiki/Tolcapone"><font color="#0645ad">tolcapone</font></a>.</p><h2><span class="editsection">[<a title="Edit section: Nonneural functions" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=29"><font color="#0645ad">edit</font></a>]</span> <span id="Nonneural_functions" class="mw-headline">Nonneural functions</span></h2><h3><span class="editsection">[<a title="Edit section: Immunoregulatory" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=30"><font color="#0645ad">edit</font></a>]</span> <span id="Immunoregulatory" class="mw-headline">Immunoregulatory</span></h3><p>Dopamine acts upon receptors present on immune cells, with all subtypes of dopamine receptors found on <a class="mw-redirect" title="Leukocyte" href="/wiki/Leukocyte"><font color="#0645ad">leukocytes</font></a>. There is low expression of receptors on <a class="mw-redirect" title="T lymphocyte" href="/wiki/T_lymphocyte"><font color="#0645ad">T lymphocytes</font></a> and <a title="Monocyte" href="/wiki/Monocyte"><font color="#0645ad">monocytes</font></a>, moderate expression on <a class="mw-redirect" title="Neutrophil" href="/wiki/Neutrophil"><font color="#0645ad">neutrophils</font></a> and <a class="mw-redirect" title="Eosinophil" href="/wiki/Eosinophil"><font color="#0645ad">eosinophils</font></a>, and high expression on <a title="B cell" href="/wiki/B_cell"><font color="#0645ad">B cells</font></a> and <a title="Natural killer cell" href="/wiki/Natural_killer_cell"><font color="#0645ad">natural killer cells</font></a>.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><font size="2"><font color="#0645ad"><span>[</span>60<span>]</span></font></font></a></sup> The <a title="Sympathetic nervous system" href="/wiki/Sympathetic_nervous_system"><font color="#0645ad">sympathetic innervation</font></a> of <a class="mw-redirect" title="Lymphoid tissue" href="/wiki/Lymphoid_tissue"><font color="#0645ad">lymphoid tissues</font></a> is dopaminergic, and increases during stress.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><font size="2"><font color="#0645ad"><span>[</span>61<span>]</span></font></font></a></sup> Dopamine can also affect immune cells in the <a title="Spleen" href="/wiki/Spleen"><font color="#0645ad">spleen</font></a>, <a title="Bone marrow" href="/wiki/Bone_marrow"><font color="#0645ad">bone marrow</font></a>, and <a class="mw-redirect" title="Blood circulation" href="/wiki/Blood_circulation"><font color="#0645ad">blood circulation</font></a>.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><font size="2"><font color="#0645ad"><span>[</span>62<span>]</span></font></font></a></sup> In addition, dopamine can be synthesized and released by the immune cells themselves.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><font size="2"><font color="#0645ad"><span>[</span>63<span>]</span></font></font></a></sup><sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><font size="2"><font color="#0645ad"><span>[</span>64<span>]</span></font></font></a></sup></p><p>The effects of dopamine on immune cells depend upon their physiological state. While dopamine activates resting <a title="T cell" href="/wiki/T_cell"><font color="#0645ad">T cells</font></a>, it inhibits them when they are activated. Disorders such as <a title="Schizophrenia" href="/wiki/Schizophrenia"><font color="#0645ad">schizophrenia</font></a> and <a title="Parkinson's disease" href="/wiki/Parkinson%27s_disease"><font color="#0645ad">Parkinson's disease</font></a>, in which there are changes in brain dopamine receptors and dopamine signaling pathways, are also associated with altered immune functioning.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><font size="2"><font color="#0645ad"><span>[</span>65<span>]</span></font></font></a></sup></p><h3><span class="editsection">[<a title="Edit section: Peripheral effects" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=31"><font color="#0645ad">edit</font></a>]</span> <span id="Peripheral_effects" class="mw-headline">Peripheral effects</span></h3><p>Dopamine also has effects when administered through an <a title="Intravenous therapy" href="/wiki/Intravenous_therapy"><font color="#0645ad">IV</font></a> line outside the central nervous system. The brand name of this preparation is known as <a class="mw-redirect" title="Intropin" href="/wiki/Intropin"><font color="#0645ad">Intropin</font></a>. The effects in this form are dose dependent.</p><ul> <li>Dosages from 2 to 5 &mu;g/kg/min are considered the &quot;renal dose.&quot;<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><font size="2"><font color="#0645ad"><span>[</span>66<span>]</span></font></font></a></sup> At this low dosage, dopamine binds <a title="Dopamine receptor D1" href="/wiki/Dopamine_receptor_D1"><font color="#0645ad">D<sub><font size="2">1</font></sub></font></a> receptors, dilating blood vessels, increasing blood flow to <a title="Renal artery" href="/wiki/Renal_artery"><font color="#0645ad">renal</font></a>, <a class="mw-redirect" title="Mesenteric artery" href="/wiki/Mesenteric_artery"><font color="#0645ad">mesenteric</font></a>, and <a class="mw-redirect" title="Coronary artery" href="/wiki/Coronary_artery"><font color="#0645ad">coronary</font></a> arteries; and increasing overall renal perfusion.<sup id="cite_ref-pharmnemonics_66-0" class="reference"><a href="#cite_note-pharmnemonics-66"><font size="2"><font color="#0645ad"><span>[</span>67<span>]</span></font></font></a></sup> Dopamine therefore has a diuretic effect, potentially increasing urine output from 5 ml/kg/hr to 10 ml/kg/hr.<sup style="WHITE-SPACE: nowrap" class="Template-Fact" title="This claim needs references to reliable sources from August 2008"><font size="2">[<em><a title="Wikipedia:Citation needed" href="/wiki/Wikipedia:Citation_needed"><font color="#0645ad">citation needed</font></a></em>]</font></sup></li></ul><ul> <li>Intermediate dosages from 5 to 10 &mu;g/kg/min additionally have a positive <a class="mw-redirect" title="Inotropic" href="/wiki/Inotropic"><font color="#0645ad">inotropic</font></a> and <a title="Chronotropic" href="/wiki/Chronotropic"><font color="#0645ad">chronotropic</font></a> effect through increased <a title="Beta-1 adrenergic receptor" href="/wiki/Beta-1_adrenergic_receptor"><font color="#0645ad">&beta;<sub><font size="2">1</font></sub> receptor</font></a> activation. It is used in patients with <a title="Shock (circulatory)" href="/wiki/Shock_(circulatory)"><font color="#0645ad">shock</font></a> or <a title="Heart failure" href="/wiki/Heart_failure"><font color="#0645ad">heart failure</font></a> to increase <a title="Cardiac output" href="/wiki/Cardiac_output"><font color="#0645ad">cardiac output</font></a> and <a title="Blood pressure" href="/wiki/Blood_pressure"><font color="#0645ad">blood pressure</font></a>.<sup id="cite_ref-pharmnemonics_66-1" class="reference"><a href="#cite_note-pharmnemonics-66"><font size="2"><font color="#0645ad"><span>[</span>67<span>]</span></font></font></a></sup> Dopamine begins to affect the heart at the lower doses, from about 3 &mu;g/kg/min IV.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><font size="2"><font color="#0645ad"><span>[</span>68<span>]</span></font></font></a></sup></li></ul><ul> <li>High doses from 10 to 20 &mu;g/kg/min is the &quot;pressor&quot; dose.<sup style="WHITE-SPACE: nowrap" class="Template-Fact" title="This claim needs references to reliable sources from August 2008"><font size="2">[<em><a title="Wikipedia:Citation needed" href="/wiki/Wikipedia:Citation_needed"><font color="#0645ad">citation needed</font></a></em>]</font></sup> This dose causes vasoconstriction, increases <a class="mw-redirect" title="Systemic vascular resistance" href="/wiki/Systemic_vascular_resistance"><font color="#0645ad">systemic vascular resistance</font></a>, and increases blood pressure through <a class="mw-redirect" title="Alpha 1 receptor" href="/wiki/Alpha_1_receptor"><font color="#0645ad">&alpha;<sub><font size="2">1</font></sub> receptor</font></a> activation;<sup id="cite_ref-pharmnemonics_66-2" class="reference"><a href="#cite_note-pharmnemonics-66"><font size="2"><font color="#0645ad"><span>[</span>67<span>]</span></font></font></a></sup> but can cause the vessels in the kidneys to constrict to the point where they will become non-functional.<sup style="WHITE-SPACE: nowrap" class="Template-Fact" title="This claim needs references to reliable sources from August 2008"><font size="2">[<em><a title="Wikipedia:Citation needed" href="/wiki/Wikipedia:Citation_needed"><font color="#0645ad">citation needed</font></a></em>]</font></sup></li></ul><h3><span class="editsection">[<a title="Edit section: Renal effects" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=32"><font color="#0645ad">edit</font></a>]</span> <span id="Renal_effects" class="mw-headline">Renal effects</span></h3><p>Dopamine induces <a title="Natriuresis" href="/wiki/Natriuresis"><font color="#0645ad">natriuresis</font></a> (sodium loss) in the <a title="Kidney" href="/wiki/Kidney"><font color="#0645ad">kidneys</font></a>.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><font size="2"><font color="#0645ad"><span>[</span>69<span>]</span></font></font></a></sup><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><font size="2"><font color="#0645ad"><span>[</span>70<span>]</span></font></font></a></sup></p><h2><span class="editsection">[<a title="Edit section: Dopamine and fruit browning" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=33"><font color="#0645ad">edit</font></a>]</span> <span id="Dopamine_and_fruit_browning" class="mw-headline">Dopamine and fruit browning</span></h2><p><a title="Polyphenol oxidase" href="/wiki/Polyphenol_oxidase"><font color="#0645ad">Polyphenol oxidases</font></a> (PPOs) are a family of enzymes responsible for the <a title="Browning (chemical process)" href="/wiki/Browning_(chemical_process)"><font color="#0645ad">browning</font></a> of fresh fruits and vegetables when they are cut or bruised. These enzymes use molecular <a title="Oxygen" href="/wiki/Oxygen"><font color="#0645ad">oxygen</font></a> (O<sub><font size="2">2</font></sub>) to <a title="Redox" href="/wiki/Redox"><font color="#0645ad">oxidise</font></a> various <a class="mw-redirect" title="Diphenol" href="/wiki/Diphenol"><font color="#0645ad">1,2-diphenols</font></a> to their corresponding <a title="Quinone" href="/wiki/Quinone"><font color="#0645ad">quinones</font></a>. The natural substrate for PPOs in <a title="Banana" href="/wiki/Banana"><font color="#0645ad">bananas</font></a> is dopamine. The product of their oxidation, dopamine quinone, spontaneously oxidises to other quinones. The quinones then <a class="mw-redirect" title="Polymerisation" href="/wiki/Polymerisation"><font color="#0645ad">polymerise</font></a> and <a class="mw-redirect" title="Condense" href="/wiki/Condense"><font color="#0645ad">condense</font></a> with <a title="Amino acid" href="/wiki/Amino_acid"><font color="#0645ad">amino acids</font></a> and <a title="Protein" href="/wiki/Protein"><font color="#0645ad">proteins</font></a> to form brown <a title="Biological pigment" href="/wiki/Biological_pigment"><font color="#0645ad">pigments</font></a> known as <a title="Melanin" href="/wiki/Melanin"><font color="#0645ad">melanins</font></a>. The quinones and melanins derived from dopamine may help protect damaged fruit and vegetables against growth of <a title="Bacteria" href="/wiki/Bacteria"><font color="#0645ad">bacteria</font></a> and <a class="mw-redirect" title="Fungi" href="/wiki/Fungi"><font color="#0645ad">fungi</font></a>.<sup id="cite_ref-mayer_70-0" class="reference"><a href="#cite_note-mayer-70"><font size="2"><font color="#0645ad"><span>[</span>71<span>]</span></font></font></a></sup></p><h2><span class="editsection">[<a title="Edit section: See also" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=34"><font color="#0645ad">edit</font></a>]</span> <span id="See_also" class="mw-headline">See also</span></h2><div style="column-count: 3; -moz-column-count: 3"><ul> <li><a title="Substance use disorder" href="/wiki/Substance_use_disorder"><font color="#0645ad">Addiction</font></a></li> <li><a title="Amphetamine" href="/wiki/Amphetamine"><font color="#0645ad">Amphetamine</font></a></li> <li><a title="Antipsychotic" href="/wiki/Antipsychotic"><font color="#0645ad">Antipsychotic</font></a></li> <li><a title="Catecholamine" href="/wiki/Catecholamine"><font color="#0645ad">Catecholamine</font></a></li> <li><a title="Catechol-O-methyl transferase" href="/wiki/Catechol-O-methyl_transferase"><font color="#0645ad">Catechol-O-methyl transferase</font></a></li> <li><a title="Classical conditioning" href="/wiki/Classical_conditioning"><font color="#0645ad">Classical conditioning</font></a></li> <li><a title="Operant conditioning" href="/wiki/Operant_conditioning"><font color="#0645ad">Operant conditioning</font></a></li> <li><a title="Cocaine" href="/wiki/Cocaine"><font color="#0645ad">Cocaine</font></a></li> <li><a title="Depression (mood)" href="/wiki/Depression_(mood)"><font color="#0645ad">Depression</font></a></li> <li><a title="Dopamine hypothesis of schizophrenia" href="/wiki/Dopamine_hypothesis_of_schizophrenia"><font color="#0645ad">Dopamine hypothesis of schizophrenia</font></a></li> <li><a title="Dopamine reuptake inhibitor" href="/wiki/Dopamine_reuptake_inhibitor"><font color="#0645ad">Dopamine reuptake inhibitors</font></a></li> <li><a title="Dopaminergic" href="/wiki/Dopaminergic"><font color="#0645ad">Dopaminergic</font></a></li> <li><a title="Methylphenidate" href="/wiki/Methylphenidate"><font color="#0645ad">Methylphenidate</font></a></li> <li><a title="Neurotransmitter" href="/wiki/Neurotransmitter"><font color="#0645ad">Neurotransmitter</font></a></li> <li><a title="Parkinson's disease" href="/wiki/Parkinson%27s_disease"><font color="#0645ad">Parkinson's disease</font></a></li> <li><a title="Prolactinoma" href="/wiki/Prolactinoma"><font color="#0645ad">Prolactinoma</font></a></li> <li><a title="Schizophrenia" href="/wiki/Schizophrenia"><font color="#0645ad">Schizophrenia</font></a></li> <li><a title="Selegiline" href="/wiki/Selegiline"><font color="#0645ad">Selegiline</font></a></li> <li><a title="Serotonin" href="/wiki/Serotonin"><font color="#0645ad">Serotonin</font></a></li></ul></div><h2><span class="editsection">[<a title="Edit section: References" href="/w/index.php?title=Dopamine&amp;action=edit&amp;section=35"><font color="#0645ad">edit</font></a>]</span> <span id="References" class="mw-headline">References</span></h2><div style="column-count: 2; -moz-column-count: 2; -webkit-column-count: 2" class="references-small references-column-count references-column-count-2"><ol class="references"> <li id="cite_note-0"><strong><a href="#cite_ref-0"><font color="#0645ad">^</font></a></strong> <a class="external free" href="http://www.encyclopedia.com/doc/1O87-ventraltegmentalarea.html" rel="nofollow"><font color="#3366bb">http://www.encyclopedia.com/doc/1O87-ventraltegmentalarea.html</font></a> Reference for VTA.</li> <li id="cite_note-1"><strong><a href="#cite_ref-1"><font color="#0645ad">^</font></a></strong> <a class="external text" href="http://movementdisorders.org/education/onlinecme/levodopa/print.pdf" rel="nofollow"><font color="#3366bb">Fahn, Stanley, &quot;The History of Levodopa as it Pertains to Parkinson's disease,&quot; Movement Disorder Society&rsquo;s 10th International Congress of Parkinson's Disease and Movement Disorders on November 1, 2006, in Kyoto, Japan.</font></a></li> <li id="cite_note-2"><strong><a href="#cite_ref-2"><font color="#0645ad">^</font></a></strong> Benes, F.M. Carlsson and the discovery of dopamine. <em>Trends in Pharmacological Sciences</em>, Volume 22, Issue 1, 1 January 2001, Pages 46-47.</li> <li id="cite_note-3"><strong><a href="#cite_ref-3"><font color="#0645ad">^</font></a></strong> <a class="external autonumber" href="http://www.jneurosci.org/cgi/content/abstract/22/2/389" rel="nofollow"><font color="#3366bb">[1]</font></a></li> <li id="cite_note-4"><strong><a href="#cite_ref-4"><font color="#0645ad">^</font></a></strong> <a class="external autonumber" href="http://www.jneurosci.org/cgi/content/abstract/27/38/10196" rel="nofollow"><font color="#3366bb">[2]</font></a></li> <li id="cite_note-dopamine_function-5"><strong><a href="#cite_ref-dopamine_function_5-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Peter Redgrave, Kevin Gurney (2006). &quot;The short-latency dopamine signal: a role in discovering novel actions?&quot;. <em>Nature Reviews Neuroscience</em> <strong>7</strong> (12): 967&ndash;975. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1038%2Fnrn2022" rel="nofollow"><font color="#3366bb">10.1038/nrn2022</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17115078" rel="nofollow"><font color="#3366bb">17115078</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+short-latency+dopamine+signal%3A+a+role+in+discovering+novel+actions%3F&amp;rft.jtitle=Nature+Reviews+Neuroscience&amp;rft.aulast=Peter+Redgrave%2C+Kevin+Gurney&amp;rft.au=Peter+Redgrave%2C+Kevin+Gurney&amp;rft.date=2006&amp;rft.volume=7&amp;rft.issue=12&amp;rft.pages=967%E2%80%93975&amp;rft_id=info:doi/10.1038%2Fnrn2022&amp;rft_id=info:pmid/17115078&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-octopamine-honeybee-6"><strong><a href="#cite_ref-octopamine-honeybee_6-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Barron AB, Maleszka R, Vander Meer RK, Robinson GE (2007). <a class="external text" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;artid=1779631" rel="nofollow"><font color="#3366bb">&quot;Octopamine modulates honey bee dance behavior&quot;</font></a>. <em>Proc. Natl. Acad. Sci. U.S.A.</em> <strong>104</strong> (5): 1703&ndash;7. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1073%2Fpnas.0610506104" rel="nofollow"><font color="#3366bb">10.1073/pnas.0610506104</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17237217" rel="nofollow"><font color="#3366bb">17237217</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Octopamine+modulates+honey+bee+dance+behavior&amp;rft.jtitle=Proc.+Natl.+Acad.+Sci.+U.S.A.&amp;rft.aulast=Barron+AB%2C+Maleszka+R%2C+Vander+Meer+RK%2C+Robinson+GE&amp;rft.au=Barron+AB%2C+Maleszka+R%2C+Vander+Meer+RK%2C+Robinson+GE&amp;rft.date=2007&amp;rft.volume=104&amp;rft.issue=5&amp;rft.pages=1703%E2%80%937&amp;rft_id=info:doi/10.1073%2Fpnas.0610506104&amp;rft_id=info:pmid/17237217&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-pmid14627633-7"><strong><a href="#cite_ref-pmid14627633_7-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (November 2003). <a class="external text" href="http://www.jneurosci.org/cgi/pmidlookup?view=long&amp;pmid=14627633" rel="nofollow"><font color="#3366bb">&quot;Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila&quot;</font></a>. <em>J. Neurosci.</em> <strong>23</strong> (33): 10495&ndash;502. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/14627633" rel="nofollow"><font color="#3366bb">14627633</font></a><span class="printonly">. <a class="external free" href="http://www.jneurosci.org/cgi/pmidlookup?view=long&amp;pmid=14627633" rel="nofollow"><font color="#3366bb">http://www.jneurosci.org/cgi/pmidlookup?view=long&amp;pmid=14627633</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Dopamine+and+octopamine+differentiate+between+aversive+and+appetitive+olfactory+memories+in+Drosophila&amp;rft.jtitle=J.+Neurosci.&amp;rft.aulast=Schwaerzel+M%2C+Monastirioti+M%2C+Scholz+H%2C+Friggi-Grelin+F%2C+Birman+S%2C+Heisenberg+M&amp;rft.au=Schwaerzel+M%2C+Monastirioti+M%2C+Scholz+H%2C+Friggi-Grelin+F%2C+Birman+S%2C+Heisenberg+M&amp;rft.date=November+2003&amp;rft.volume=23&amp;rft.issue=33&amp;rft.pages=10495%E2%80%93502&amp;rft_id=info:pmid/14627633&amp;rft_id=http%3A%2F%2Fwww.jneurosci.org%2Fcgi%2Fpmidlookup%3Fview%3Dlong%26pmid%3D14627633&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-pmid19521527-8"><strong><a href="#cite_ref-pmid19521527_8-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Selcho M, Pauls D, Han KA, Stocker RF, Thum AS (2009). <a class="external text" href="http://dx.plos.org/10.1371/journal.pone.0005897" rel="nofollow"><font color="#3366bb">&quot;The role of dopamine in Drosophila larval classical olfactory conditioning&quot;</font></a>. <em>PLoS ONE</em> <strong>4</strong> (6): e5897. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1371%2Fjournal.pone.0005897" rel="nofollow"><font color="#3366bb">10.1371/journal.pone.0005897</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/19521527" rel="nofollow"><font color="#3366bb">19521527</font></a>. <a title="PubMed Central" href="/wiki/PubMed_Central"><font color="#0645ad">PMC</font></a>&nbsp;<a class="external text" href="http://www.pubmedcentral.gov/articlerender.fcgi?tool=pmcentrez&amp;artid=2690826" rel="nofollow"><font color="#3366bb">2690826</font></a><span class="printonly">. <a class="external free" href="http://dx.plos.org/10.1371/journal.pone.0005897" rel="nofollow"><font color="#3366bb">http://dx.plos.org/10.1371/journal.pone.0005897</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+role+of+dopamine+in+Drosophila+larval+classical+olfactory+conditioning&amp;rft.jtitle=PLoS+ONE&amp;rft.aulast=Selcho+M%2C+Pauls+D%2C+Han+KA%2C+Stocker+RF%2C+Thum+AS&amp;rft.au=Selcho+M%2C+Pauls+D%2C+Han+KA%2C+Stocker+RF%2C+Thum+AS&amp;rft.date=2009&amp;rft.volume=4&amp;rft.issue=6&amp;rft.pages=e5897&amp;rft_id=info:doi/10.1371%2Fjournal.pone.0005897&amp;rft_id=info:pmid/19521527&amp;rft_id=http%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pone.0005897&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-9"><strong><a href="#cite_ref-9"><font color="#0645ad">^</font></a></strong> <a class="external text" href="http://www.pdn.cam.ac.uk/staff/schultz/" rel="nofollow"><font color="#3366bb">Schultz, Cambridge university, UK</font></a></li> <li id="cite_note-10"><strong><a href="#cite_ref-10"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Bjorklund A, Dunnett SB (2007). &quot;Dopamine neuron systems in the brain: an update&quot;. <em>Trends in Neurosciences</em> <strong>20</strong> (5): 194&ndash;202. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2Fj.tins.2007.03.006" rel="nofollow"><font color="#3366bb">10.1016/j.tins.2007.03.006</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17408759" rel="nofollow"><font color="#3366bb">17408759</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Dopamine+neuron+systems+in+the+brain%3A+an+update&amp;rft.jtitle=Trends+in+Neurosciences&amp;rft.aulast=Bjorklund+A%2C+Dunnett+SB&amp;rft.au=Bjorklund+A%2C+Dunnett+SB&amp;rft.date=2007&amp;rft.volume=20&amp;rft.issue=5&amp;rft.pages=194%E2%80%93202&amp;rft_id=info:doi/10.1016%2Fj.tins.2007.03.006&amp;rft_id=info:pmid/17408759&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-11"><strong><a href="#cite_ref-11"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Grace AA, (1991). <a class="external text" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T0F-485YGDY-4&amp;_user=128590&amp;_coverDate=12%2F31%2F1991&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_searchStrId=1403836309&amp;_rerunOrigin=scholar.google&amp;_acct=C000010619&amp;_version=1&amp;_urlVersion=0&amp;_userid=128590&amp;md5=1c4978d564d1aaa5afc501a3454d469c" rel="nofollow"><font color="#3366bb">&quot;Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the eitiology of schizophrenia&quot;</font></a> (pdf). <em>Neuroscience</em> <strong>41</strong> (1): 1&ndash;24. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2F0306-4522%2891%2990196-U" rel="nofollow"><font color="#3366bb">10.1016/0306-4522(91)90196-U</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/1676137" rel="nofollow"><font color="#3366bb">1676137</font></a><span class="printonly">. <a class="external free" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T0F-485YGDY-4&amp;_user=128590&amp;_coverDate=12%2F31%2F1991&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_searchStrId=1403836309&amp;_rerunOrigin=scholar.google&amp;_acct=C000010619&amp;_version=1&amp;_urlVersion=0&amp;_userid=128590&amp;md5=1c4978d564d1aaa5afc501a3454d469c" rel="nofollow"><font color="#3366bb">http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T0F-485YGDY-4&amp;_user=128590&amp;_coverDate=12%2F31%2F1991&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_searchStrId=1403836309&amp;_rerunOrigin=scholar.google&amp;_acct=C000010619&amp;_version=1&amp;_urlVersion=0&amp;_userid=128590&amp;md5=1c4978d564d1aaa5afc501a3454d469c</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Phasic+versus+tonic+dopamine+release+and+the+modulation+of+dopamine+system+responsivity%3A+A+hypothesis+for+the+eitiology+of+schizophrenia&amp;rft.jtitle=Neuroscience&amp;rft.aulast=Grace+AA%2C&amp;rft.au=Grace+AA%2C&amp;rft.date=1991&amp;rft.volume=41&amp;rft.issue=1&amp;rft.pages=1%E2%80%9324&amp;rft_id=info:doi/10.1016%2F0306-4522%2891%2990196-U&amp;rft_id=info:pmid/1676137&amp;rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DArticleURL%26_udi%3DB6T0F-485YGDY-4%26_user%3D128590%26_coverDate%3D12%252F31%252F1991%26_rdoc%3D1%26_fmt%3Dhigh%26_orig%3Dsearch%26_sort%3Dd%26_docanchor%3D%26view%3Dc%26_searchStrId%3D1403836309%26_rerunOrigin%3Dscholar.google%26_acct%3DC000010619%26_version%3D1%26_urlVersion%3D0%26_userid%3D128590%26md5%3D1c4978d564d1aaa5afc501a3454d469c&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-12"><strong><a href="#cite_ref-12"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Grace AA, Bunney BS (1984). <a class="external text" href="http://www.jneurosci.org/cgi/reprint/4/11/2866" rel="nofollow"><font color="#3366bb">&quot;The control of firing pattern in nigral dopamine neurons: single spike firing&quot;</font></a> (pdf). <em>Journal of Neuroscience</em> <strong>4</strong> (11): 2866&ndash;2876. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/6150070" rel="nofollow"><font color="#3366bb">6150070</font></a><span class="printonly">. <a class="external free" href="http://www.jneurosci.org/cgi/reprint/4/11/2866" rel="nofollow"><font color="#3366bb">http://www.jneurosci.org/cgi/reprint/4/11/2866</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+control+of+firing+pattern+in+nigral+dopamine+neurons%3A+single+spike+firing&amp;rft.jtitle=Journal+of+Neuroscience&amp;rft.aulast=Grace+AA%2C+Bunney+BS&amp;rft.au=Grace+AA%2C+Bunney+BS&amp;rft.date=1984&amp;rft.volume=4&amp;rft.issue=11&amp;rft.pages=2866%E2%80%932876&amp;rft_id=info:pmid/6150070&amp;rft_id=http%3A%2F%2Fwww.jneurosci.org%2Fcgi%2Freprint%2F4%2F11%2F2866&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-13"><strong><a href="#cite_ref-13"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Grace AA, Bunney BS (1984). <a class="external text" href="http://www.jneurosci.org/cgi/reprint/4/11/2877" rel="nofollow"><font color="#3366bb">&quot;The control of firing pattern in nigral dopamine neurons: burst firing&quot;</font></a> (pdf). <em>Journal of Neuroscience</em> <strong>4</strong> (11): 28677&ndash;2890. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/6150071" rel="nofollow"><font color="#3366bb">6150071</font></a><span class="printonly">. <a class="external free" href="http://www.jneurosci.org/cgi/reprint/4/11/2877" rel="nofollow"><font color="#3366bb">http://www.jneurosci.org/cgi/reprint/4/11/2877</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+control+of+firing+pattern+in+nigral+dopamine+neurons%3A+burst+firing&amp;rft.jtitle=Journal+of+Neuroscience&amp;rft.aulast=Grace+AA%2C+Bunney+BS&amp;rft.au=Grace+AA%2C+Bunney+BS&amp;rft.date=1984&amp;rft.volume=4&amp;rft.issue=11&amp;rft.pages=28677%E2%80%932890&amp;rft_id=info:pmid/6150071&amp;rft_id=http%3A%2F%2Fwww.jneurosci.org%2Fcgi%2Freprint%2F4%2F11%2F2877&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-14"><strong><a href="#cite_ref-14"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Gonon FG (1988). <a class="external text" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T0F-485P3C0-5Y&amp;_user=128590&amp;_coverDate=01%2F31%2F1988&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_searchStrId=1403496208&amp;_rerunOrigin=scholar.google&amp;_acct=C000010619&amp;_version=1&amp;_urlVersion=0&amp;_userid=128590&amp;md5=366f22be3c8d212a7bf26bf7630eeb93" rel="nofollow"><font color="#3366bb">&quot;Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry&quot;</font></a> (pdf). <em>Neuroscience</em> <strong>24</strong> (1): 19&ndash;28. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2F0306-4522%2888%2990307-7" rel="nofollow"><font color="#3366bb">10.1016/0306-4522(88)90307-7</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/3368048" rel="nofollow"><font color="#3366bb">3368048</font></a><span class="printonly">. <a class="external free" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T0F-485P3C0-5Y&amp;_user=128590&amp;_coverDate=01%2F31%2F1988&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_searchStrId=1403496208&amp;_rerunOrigin=scholar.google&amp;_acct=C000010619&amp;_version=1&amp;_urlVersion=0&amp;_userid=128590&amp;md5=366f22be3c8d212a7bf26bf7630eeb93" rel="nofollow"><font color="#3366bb">http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T0F-485P3C0-5Y&amp;_user=128590&amp;_coverDate=01%2F31%2F1988&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_searchStrId=1403496208&amp;_rerunOrigin=scholar.google&amp;_acct=C000010619&amp;_version=1&amp;_urlVersion=0&amp;_userid=128590&amp;md5=366f22be3c8d212a7bf26bf7630eeb93</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Nonlinear+relationship+between+impulse+flow+and+dopamine+released+by+rat+midbrain+dopaminergic+neurons+as+studied+by+in+vivo+electrochemistry&amp;rft.jtitle=Neuroscience&amp;rft.aulast=Gonon+FG&amp;rft.au=Gonon+FG&amp;rft.date=1988&amp;rft.volume=24&amp;rft.issue=1&amp;rft.pages=19%E2%80%9328&amp;rft_id=info:doi/10.1016%2F0306-4522%2888%2990307-7&amp;rft_id=info:pmid/3368048&amp;rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DArticleURL%26_udi%3DB6T0F-485P3C0-5Y%26_user%3D128590%26_coverDate%3D01%252F31%252F1988%26_rdoc%3D1%26_fmt%3Dhigh%26_orig%3Dsearch%26_sort%3Dd%26_docanchor%3D%26view%3Dc%26_searchStrId%3D1403496208%26_rerunOrigin%3Dscholar.google%26_acct%3DC000010619%26_version%3D1%26_urlVersion%3D0%26_userid%3D128590%26md5%3D366f22be3c8d212a7bf26bf7630eeb93&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-Inhibitorydopamine-15"><strong><a href="#cite_ref-Inhibitorydopamine_15-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Heijtz RD, Kolb B, Forssberg H (2007). <a class="external text" href="http://www.sciencedirect.com/science?_ob=MImg&amp;_imagekey=B6T0P-4NTB97R-Y-1&amp;_cdi=4868&amp;_user=308069&amp;_orig=search&amp;_coverDate=09%2F30%2F2007&amp;_sk=999079998&amp;view=c&amp;wchp=dGLbVzz-zSkzV&amp;md5=c49d721e7e713190c2ac6fab7a491093&amp;ie=/sdarticle.pdf" rel="nofollow"><font color="#3366bb">&quot;Motor inhibitory role of dopamine D1 receptors: implications for ADHD&quot;</font></a> (PDF). <em>Physiol Behav</em> <strong>92</strong> (1-2): 155&ndash;160. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2Fj.physbeh.2007.05.024" rel="nofollow"><font color="#3366bb">10.1016/j.physbeh.2007.05.024</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17585966" rel="nofollow"><font color="#3366bb">17585966</font></a><span class="printonly">. <a class="external free" href="http://www.sciencedirect.com/science?_ob=MImg&amp;_imagekey=B6T0P-4NTB97R-Y-1&amp;_cdi=4868&amp;_user=308069&amp;_orig=search&amp;_coverDate=09%2F30%2F2007&amp;_sk=999079998&amp;view=c&amp;wchp=dGLbVzz-zSkzV&amp;md5=c49d721e7e713190c2ac6fab7a491093&amp;ie=/sdarticle.pdf" rel="nofollow"><font color="#3366bb">http://www.sciencedirect.com/science?_ob=MImg&amp;_imagekey=B6T0P-4NTB97R-Y-1&amp;_cdi=4868&amp;_user=308069&amp;_orig=search&amp;_coverDate=09%2F30%2F2007&amp;_sk=999079998&amp;view=c&amp;wchp=dGLbVzz-zSkzV&amp;md5=c49d721e7e713190c2ac6fab7a491093&amp;ie=/sdarticle.pdf</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Motor+inhibitory+role+of+dopamine+D1+receptors%3A+implications+for+ADHD&amp;rft.jtitle=Physiol+Behav&amp;rft.aulast=Heijtz+RD%2C+Kolb+B%2C+Forssberg+H&amp;rft.au=Heijtz+RD%2C+Kolb+B%2C+Forssberg+H&amp;rft.date=2007&amp;rft.volume=92&amp;rft.issue=1-2&amp;rft.pages=155%E2%80%93160&amp;rft_id=info:doi/10.1016%2Fj.physbeh.2007.05.024&amp;rft_id=info:pmid/17585966&amp;rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DMImg%26_imagekey%3DB6T0P-4NTB97R-Y-1%26_cdi%3D4868%26_user%3D308069%26_orig%3Dsearch%26_coverDate%3D09%252F30%252F2007%26_sk%3D999079998%26view%3Dc%26wchp%3DdGLbVzz-zSkzV%26md5%3Dc49d721e7e713190c2ac6fab7a491093%26ie%3D%2Fsdarticle.pdf&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-16"><strong><a href="#cite_ref-16"><font color="#0645ad">^</font></a></strong> Browman KE, Curzon P, Pan JB, Molesky AL, Komater VA, Decker MW, Brioni JD, Moreland RB, Fox GB. A-412997, a selective dopamine D4 agonist, improves cognitive performance in rats. <em>Pharmacology, Biochemistry and Behaviour</em>. 2005 Sep;82(1):148-55. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/16154186"><font color="#3366bb">PMID 16154186</font></a></li> <li id="cite_note-prolactininhibition-17"><strong><a href="#cite_ref-prolactininhibition_17-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Ben-Jonathan N, Hnasko R (2001). <a class="external text" href="http://edrv.endojournals.org/cgi/reprint/22/6/724.pdf" rel="nofollow"><font color="#3366bb">&quot;Dopamine as a Prolactin (PRL) Inhibitor&quot;</font></a> (PDF). <em>Endocrine Reviews</em> <strong>22</strong> (6): 724&ndash;763. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1210%2Fer.22.6.724" rel="nofollow"><font color="#3366bb">10.1210/er.22.6.724</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/11739329" rel="nofollow"><font color="#3366bb">11739329</font></a><span class="printonly">. <a class="external free" href="http://edrv.endojournals.org/cgi/reprint/22/6/724.pdf" rel="nofollow"><font color="#3366bb">http://edrv.endojournals.org/cgi/reprint/22/6/724.pdf</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Dopamine+as+a+Prolactin+%28PRL%29+Inhibitor&amp;rft.jtitle=Endocrine+Reviews&amp;rft.aulast=Ben-Jonathan+N%2C+Hnasko+R&amp;rft.au=Ben-Jonathan+N%2C+Hnasko+R&amp;rft.date=2001&amp;rft.volume=22&amp;rft.issue=6&amp;rft.pages=724%E2%80%93763&amp;rft_id=info:doi/10.1210%2Fer.22.6.724&amp;rft_id=info:pmid/11739329&amp;rft_id=http%3A%2F%2Fedrv.endojournals.org%2Fcgi%2Freprint%2F22%2F6%2F724.pdf&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-18"><strong><a href="#cite_ref-18"><font color="#0645ad">^</font></a></strong> <a class="external text" href="http://www.medicalnewstoday.com/articles/94023.php" rel="nofollow"><em><font color="#3366bb">Dopamine Involved In Aggression - Medical News Today</font></em></a></li> <li id="cite_note-19"><strong><a href="#cite_ref-19"><font color="#0645ad">^</font></a></strong> Vanderbilt University (2008, January 15). Aggression As Rewarding As Sex, Food And Drugs, New Research Shows. ScienceDaily.</li> <li id="cite_note-PMID11805404-20"><strong><a href="#cite_ref-PMID11805404_20-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Giuliano, F.; Allard J. (2001). &quot;Dopamine and male sexual function&quot;. <em>Eur Urol</em> <strong>40</strong> (6): 601&ndash;608. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1159%2F000049844" rel="nofollow"><font color="#3366bb">10.1159/000049844</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/11805404" rel="nofollow"><font color="#3366bb">11805404</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Dopamine+and+male+sexual+function&amp;rft.jtitle=Eur+Urol&amp;rft.aulast=Giuliano&amp;rft.aufirst=F.&amp;rft.au=Giuliano%2C%26%2332%3BF.&amp;rft.date=2001&amp;rft.volume=40&amp;rft.issue=6&amp;rft.pages=601%E2%80%93608&amp;rft_id=info:doi/10.1159%2F000049844&amp;rft_id=info:pmid/11805404&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-PMID11477488-21"><strong><a href="#cite_ref-PMID11477488_21-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Giuliano, F.; Allard J. (2001). <a class="external text" href="http://www.nature.com/ijir/journal/v13/n3s/index.html" rel="nofollow"><font color="#3366bb">&quot;Dopamine and sexual function&quot;</font></a>. <em>Int J Impot Res</em> <strong>13</strong> (Suppl 3): S18&ndash;S28. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1038%2Fsj.ijir.3900719" rel="nofollow"><font color="#3366bb">10.1038/sj.ijir.3900719</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/11477488" rel="nofollow"><font color="#3366bb">11477488</font></a><span class="printonly">. <a class="external free" href="http://www.nature.com/ijir/journal/v13/n3s/index.html" rel="nofollow"><font color="#3366bb">http://www.nature.com/ijir/journal/v13/n3s/index.html</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Dopamine+and+sexual+function&amp;rft.jtitle=Int+J+Impot+Res&amp;rft.aulast=Giuliano&amp;rft.aufirst=F.&amp;rft.au=Giuliano%2C%26%2332%3BF.&amp;rft.date=2001&amp;rft.volume=13&amp;rft.issue=Suppl+3&amp;rft.pages=S18%E2%80%93S28&amp;rft_id=info:doi/10.1038%2Fsj.ijir.3900719&amp;rft_id=info:pmid/11477488&amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fijir%2Fjournal%2Fv13%2Fn3s%2Findex.html&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-fn5-22">^ <a href="#cite_ref-fn5_22-0"><sup><em><strong><font color="#0645ad" size="2">a</font></strong></em></sup></a> <a href="#cite_ref-fn5_22-1"><sup><em><strong><font color="#0645ad" size="2">b</font></strong></em></sup></a> <a href="#cite_ref-fn5_22-2"><sup><em><strong><font color="#0645ad" size="2">c</font></strong></em></sup></a> <a href="#cite_ref-fn5_22-3"><sup><em><strong><font color="#0645ad" size="2">d</font></strong></em></sup></a> <a href="#cite_ref-fn5_22-4"><sup><em><strong><font color="#0645ad" size="2">e</font></strong></em></sup></a> <span class="citation Journal">Arias-Carri&oacute;n O, P&ouml;ppel E (2007). <a class="external text" href="http://www.ane.pl/pdfdownload.php?art=6738" rel="nofollow"><font color="#3366bb">&quot;Dopamine, learning and reward-seeking behavior&quot;</font></a>. <em>Act Neurobiol Exp</em> <strong>67</strong> (4): 481&ndash;488<span class="printonly">. <a class="external free" href="http://www.ane.pl/pdfdownload.php?art=6738" rel="nofollow"><font color="#3366bb">http://www.ane.pl/pdfdownload.php?art=6738</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Dopamine%2C+learning+and+reward-seeking+behavior&amp;rft.jtitle=Act+Neurobiol+Exp&amp;rft.aulast=Arias-Carri%C3%B3n+O%2C+P%C3%B6ppel+E&amp;rft.au=Arias-Carri%C3%B3n+O%2C+P%C3%B6ppel+E&amp;rft.date=2007&amp;rft.volume=67&amp;rft.issue=4&amp;rft.pages=481%E2%80%93488&amp;rft_id=http%3A%2F%2Fwww.ane.pl%2Fpdfdownload.php%3Fart%3D6738&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-Matsumoto-23">^ <a href="#cite_ref-Matsumoto_23-0"><sup><em><strong><font color="#0645ad" size="2">a</font></strong></em></sup></a> <a href="#cite_ref-Matsumoto_23-1"><sup><em><strong><font color="#0645ad" size="2">b</font></strong></em></sup></a> <a href="#cite_ref-Matsumoto_23-2"><sup><em><strong><font color="#0645ad" size="2">c</font></strong></em></sup></a> <a href="#cite_ref-Matsumoto_23-3"><sup><em><strong><font color="#0645ad" size="2">d</font></strong></em></sup></a> Matsumoto M, Hikosaka O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature. 459: 837-41. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/19448610"><font color="#3366bb">PMID 19448610</font></a> <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1038%2Fnature08028" rel="nofollow"><font color="#3366bb">10.1038/nature08028</font></a></li> <li id="cite_note-fn1-24"><strong><a href="#cite_ref-fn1_24-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Peci&ntilde;a S, Cagniard B, Berridge K, Aldridge J, Zhuang X (2003). &quot;Hyperdopaminergic mutant mice have higher &quot;wanting&quot; but not &quot;liking&quot; for sweet rewards&quot;. <em>J Neurosci</em> <strong>23</strong> (28): 9395&ndash;402. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/14561867" rel="nofollow"><font color="#3366bb">14561867</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Hyperdopaminergic+mutant+mice+have+higher+%22wanting%22+but+not+%22liking%22+for+sweet+rewards&amp;rft.jtitle=J+Neurosci&amp;rft.aulast=Peci%C3%B1a+S%2C+Cagniard+B%2C+Berridge+K%2C+Aldridge+J%2C+Zhuang+X&amp;rft.au=Peci%C3%B1a+S%2C+Cagniard+B%2C+Berridge+K%2C+Aldridge+J%2C+Zhuang+X&amp;rft.date=2003&amp;rft.volume=23&amp;rft.issue=28&amp;rft.pages=9395%E2%80%93402&amp;rft_id=info:pmid/14561867&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-fn2-25"><strong><a href="#cite_ref-fn2_25-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Lambert M, Schimmelmann B, Karow A, Naber D (2003). &quot;Subjective well-being and initial dysphoric reaction under antipsychotic drugs - concepts, measurement and clinical relevance&quot;. <em>Pharmacopsychiatry</em> <strong>36</strong> (Suppl 3): S181&ndash;90. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1055%2Fs-2003-45128" rel="nofollow"><font color="#3366bb">10.1055/s-2003-45128</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/14677077" rel="nofollow"><font color="#3366bb">14677077</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Subjective+well-being+and+initial+dysphoric+reaction+under+antipsychotic+drugs+-+concepts%2C+measurement+and+clinical+relevance&amp;rft.jtitle=Pharmacopsychiatry&amp;rft.aulast=Lambert+M%2C+Schimmelmann+B%2C+Karow+A%2C+Naber+D&amp;rft.au=Lambert+M%2C+Schimmelmann+B%2C+Karow+A%2C+Naber+D&amp;rft.date=2003&amp;rft.volume=36&amp;rft.issue=Suppl+3&amp;rft.pages=S181%E2%80%9390&amp;rft_id=info:doi/10.1055%2Fs-2003-45128&amp;rft_id=info:pmid/14677077&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-fn3-26"><strong><a href="#cite_ref-fn3_26-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Lemke M, Brecht H, Koester J, Kraus P, Reichmann H (2005). <a class="external text" href="http://neuro.psychiatryonline.org/cgi/content/full/17/2/214" rel="nofollow"><font color="#3366bb">&quot;Anhedonia, depression, and motor functioning in Parkinson's disease during treatment with pramipexole&quot;</font></a>. <em>J Neuropsychiatry Clin Neurosci</em> <strong>17</strong> (2): 214&ndash;20. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1176%2Fappi.neuropsych.17.2.214" rel="nofollow"><font color="#3366bb">10.1176/appi.neuropsych.17.2.214</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/15939976" rel="nofollow"><font color="#3366bb">15939976</font></a><span class="printonly">. <a class="external free" href="http://neuro.psychiatryonline.org/cgi/content/full/17/2/214" rel="nofollow"><font color="#3366bb">http://neuro.psychiatryonline.org/cgi/content/full/17/2/214</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Anhedonia%2C+depression%2C+and+motor+functioning+in+Parkinson%27s+disease+during+treatment+with+pramipexole&amp;rft.jtitle=J+Neuropsychiatry+Clin+Neurosci&amp;rft.aulast=Lemke+M%2C+Brecht+H%2C+Koester+J%2C+Kraus+P%2C+Reichmann+H&amp;rft.au=Lemke+M%2C+Brecht+H%2C+Koester+J%2C+Kraus+P%2C+Reichmann+H&amp;rft.date=2005&amp;rft.volume=17&amp;rft.issue=2&amp;rft.pages=214%E2%80%9320&amp;rft_id=info:doi/10.1176%2Fappi.neuropsych.17.2.214&amp;rft_id=info:pmid/15939976&amp;rft_id=http%3A%2F%2Fneuro.psychiatryonline.org%2Fcgi%2Fcontent%2Ffull%2F17%2F2%2F214&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-fn4-27"><strong><a href="#cite_ref-fn4_27-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Peci&ntilde;a S, Berridge K (2005). <a class="external text" href="http://www.jneurosci.org/cgi/content/full/jneuro;25/50/11777" rel="nofollow"><font color="#3366bb">&quot;Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness?&quot;</font></a>. <em>J Neurosci</em> <strong>25</strong> (50): 11777&ndash;86. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1523%2FJNEUROSCI.2329-05.2005" rel="nofollow"><font color="#3366bb">10.1523/JNEUROSCI.2329-05.2005</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16354936" rel="nofollow"><font color="#3366bb">16354936</font></a><span class="printonly">. <a class="external free" href="http://www.jneurosci.org/cgi/content/full/jneuro;25/50/11777" rel="nofollow"><font color="#3366bb">http://www.jneurosci.org/cgi/content/full/jneuro;25/50/11777</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Hedonic+hot+spot+in+nucleus+accumbens+shell%3A+where+do+mu-opioids+cause+increased+hedonic+impact+of+sweetness%3F&amp;rft.jtitle=J+Neurosci&amp;rft.aulast=Peci%C3%B1a+S%2C+Berridge+K&amp;rft.au=Peci%C3%B1a+S%2C+Berridge+K&amp;rft.date=2005&amp;rft.volume=25&amp;rft.issue=50&amp;rft.pages=11777%E2%80%9386&amp;rft_id=info:doi/10.1523%2FJNEUROSCI.2329-05.2005&amp;rft_id=info:pmid/16354936&amp;rft_id=http%3A%2F%2Fwww.jneurosci.org%2Fcgi%2Fcontent%2Ffull%2Fjneuro%3B25%2F50%2F11777&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-fn6-28"><strong><a href="#cite_ref-fn6_28-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Pfaus J, Phillips A (1991). &quot;Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat&quot;. <em>Behav Neurosci</em> <strong>105</strong> (5): 727&ndash;43. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1037%2F0735-7044.105.5.727" rel="nofollow"><font color="#3366bb">10.1037/0735-7044.105.5.727</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/1840012" rel="nofollow"><font color="#3366bb">1840012</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Role+of+dopamine+in+anticipatory+and+consummatory+aspects+of+sexual+behavior+in+the+male+rat&amp;rft.jtitle=Behav+Neurosci&amp;rft.aulast=Pfaus+J%2C+Phillips+A&amp;rft.au=Pfaus+J%2C+Phillips+A&amp;rft.date=1991&amp;rft.volume=105&amp;rft.issue=5&amp;rft.pages=727%E2%80%9343&amp;rft_id=info:doi/10.1037%2F0735-7044.105.5.727&amp;rft_id=info:pmid/1840012&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-29"><strong><a href="#cite_ref-29"><font color="#0645ad">^</font></a></strong> <a class="external free" href="http://bipolar.about.com/cs/menu_treat/a/0312_treatmania_3.htm" rel="nofollow"><font color="#3366bb">http://bipolar.about.com/cs/menu_treat/a/0312_treatmania_3.htm</font></a></li> <li id="cite_note-30"><strong><a href="#cite_ref-30"><font color="#0645ad">^</font></a></strong> Jensen TS, Yaksh TL.Effects of an intrathecal dopamine agonist, apomorphine, on thermal and chemical evoked noxious responses in rats.Brain Res. 1984 Apr 2;296(2):285-93</li> <li id="cite_note-31"><strong><a href="#cite_ref-31"><font color="#0645ad">^</font></a></strong> Flores JA, El Banoua F, Gal&aacute;n-Rodr&iacute;guez B, Fernandez-Espejo E.Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors.Pain. 2004 Jul;110(1-2):205-14.</li> <li id="cite_note-32"><strong><a href="#cite_ref-32"><font color="#0645ad">^</font></a></strong> Shyu BC, Kiritsy-Roy JA, Morrow TJ, Casey KL.Neurophysiological, pharmacological and behavioral evidence for medial thalamic mediation of cocaine-induced dopaminergic analgesia.Brain Res. 1992 Feb 14;572(1-2):216-23.</li> <li id="cite_note-33"><strong><a href="#cite_ref-33"><font color="#0645ad">^</font></a></strong> Chudler EH, Dong WK.The role of the basal ganglia in nociception and pain.Pain. 1995 Jan;60(1):3-38</li> <li id="cite_note-34"><strong><a href="#cite_ref-34"><font color="#0645ad">^</font></a></strong> Altier N, Stewart J.The role of dopamine in the nucleus accumbens in analgesia.Life Sci. 1999;65(22):2269-87</li> <li id="cite_note-35"><strong><a href="#cite_ref-35"><font color="#0645ad">^</font></a></strong> Burkey AR, Carstens E, Jasmin L.Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception.J Neurosci. 1999 May 15;19(10):4169-79.</li> <li id="cite_note-36"><strong><a href="#cite_ref-36"><font color="#0645ad">^</font></a></strong> Coffeen U, L&oacute;pez-Avila A, Ortega-Legaspi JM, del Angel R, L&oacute;pez-Mu&ntilde;oz FJ, Pellicer F.Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat.Eur J Pain. 2008 Jul;12(5):535-43.</li> <li id="cite_note-37"><strong><a href="#cite_ref-37"><font color="#0645ad">^</font></a></strong> L&oacute;pez-Avila A, Coffeen U, Ortega-Legaspi JM, del Angel R, Pellicer F.Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex.Pain. 2004 Sep;111(1-2):136-43.</li> <li id="cite_note-38"><strong><a href="#cite_ref-38"><font color="#0645ad">^</font></a></strong> Brefel-Courbon C, Payoux P, Thalamas C, Ory F, Quelven I, Chollet F, Montastruc JL, Rascol O.Effect of levodopa on pain threshold in Parkinson's disease: a clinical and positron emission tomography study.Mov Disord. 2005 Dec;20(12):1557-63.</li> <li id="cite_note-39"><strong><a href="#cite_ref-39"><font color="#0645ad">^</font></a></strong> J&auml;&auml;skel&auml;inen SK, Rinne JO, Forssell H, Tenovuo O, Kaasinen V, Sonninen P, Bergman J.Role of the dopaminergic system in chronic pain -- a fluorodopa-PET study.Pain. 2001 Feb 15;90(3):257-60.</li> <li id="cite_note-40"><strong><a href="#cite_ref-40"><font color="#0645ad">^</font></a></strong> Wood PB, Patterson JC 2nd, Sunderland JJ, Tainter KH, Glabus MF, Lilien DL.Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study.J Pain. 2007 Jan;8(1):51-8.</li> <li id="cite_note-41"><strong><a href="#cite_ref-41"><font color="#0645ad">^</font></a></strong> Wood PB, Schweinhardt P, Jaeger E, Dagher A, Hakyemez H, Rabiner EA, Bushnell MC, Chizh BA.Fibromyalgia patients show an abnormal dopamine response to pain.Eur J Neurosci. 2007 Jun;25(12):3576-82.</li> <li id="cite_note-42"><strong><a href="#cite_ref-42"><font color="#0645ad">^</font></a></strong> Cervenka S, P&aring;lhagen SE, Comley RA, Panagiotidis G, Csel&eacute;nyi Z, Matthews JC, Lai RY, Halldin C, Farde L.Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding.Brain. 2006 Aug;129(Pt 8):2017-28.</li> <li id="cite_note-43"><strong><a href="#cite_ref-43"><font color="#0645ad">^</font></a></strong> Wood PB.Role of central dopamine in pain and analgesia.Expert Rev Neurother. 2008 May;8(5):781-97.</li> <li id="cite_note-44"><strong><a href="#cite_ref-44"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Schultz W (2002). &quot;Getting formal with dopamine and reward&quot;. <em>Neuron</em> <strong>36</strong> (2): 241&ndash;263. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2FS0896-6273%2802%2900967-4" rel="nofollow"><font color="#3366bb">10.1016/S0896-6273(02)00967-4</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/12383780" rel="nofollow"><font color="#3366bb">12383780</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Getting+formal+with+dopamine+and+reward&amp;rft.jtitle=Neuron&amp;rft.aulast=Schultz+W&amp;rft.au=Schultz+W&amp;rft.date=2002&amp;rft.volume=36&amp;rft.issue=2&amp;rft.pages=241%E2%80%93263&amp;rft_id=info:doi/10.1016%2FS0896-6273%2802%2900967-4&amp;rft_id=info:pmid/12383780&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-45"><strong><a href="#cite_ref-45"><font color="#0645ad">^</font></a></strong> <span class="citation web"><a class="external text" href="http://journals.cambridge.org/action/displayAbstract?fromPage=online&amp;aid=332927" rel="nofollow"><font color="#3366bb">&quot;A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes&quot;</font></a>. Cambridge Journals<span class="printonly">. <a class="external free" href="http://journals.cambridge.org/action/displayAbstract?fromPage=online&amp;aid=332927" rel="nofollow"><font color="#3366bb">http://journals.cambridge.org/action/displayAbstract?fromPage=online&amp;aid=332927</font></a></span><span class="reference-accessdate">. Retrieved 2009-04-20</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=A+dynamic+developmental+theory+of+attention-deficit%2Fhyperactivity+disorder+%28ADHD%29+predominantly+hyperactive%2Fimpulsive+and+combined+subtypes&amp;rft.atitle=&amp;rft.pub=Cambridge+Journals&amp;rft_id=http%3A%2F%2Fjournals.cambridge.org%2Faction%2FdisplayAbstract%3FfromPage%3Donline%26aid%3D332927&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-46"><strong><a href="#cite_ref-46"><font color="#0645ad">^</font></a></strong> Colzato LS, van den Wildenberg WP, van Wouwe NC, Pannebakker MM, Hommel B. (2009). <a class="external text" href="http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=2700244&amp;blobtype=pdf" rel="nofollow"><font color="#3366bb">Dopamine and inhibitory action control: evidence from spontaneous eye blink rates.</font></a> Exp Brain Res. 196(3):467-74. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/19484465"><font color="#3366bb">PMID 19484465</font></a> <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1007%2Fs00221-009-1862-x" rel="nofollow"><font color="#3366bb">10.1007/s00221-009-1862-x</font></a></li> <li id="cite_note-pmid17988927-47"><strong><a href="#cite_ref-pmid17988927_47-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Merims D, Giladi N (2008). &quot;Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson's disease&quot;. <em>Parkinsonism Relat. Disord.</em> <strong>14</strong> (4): 273&ndash;80. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2Fj.parkreldis.2007.09.007" rel="nofollow"><font color="#3366bb">10.1016/j.parkreldis.2007.09.007</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17988927" rel="nofollow"><font color="#3366bb">17988927</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Dopamine+dysregulation+syndrome%2C+addiction+and+behavioral+changes+in+Parkinson%27s+disease&amp;rft.jtitle=Parkinsonism+Relat.+Disord.&amp;rft.aulast=Merims+D%2C+Giladi+N&amp;rft.au=Merims+D%2C+Giladi+N&amp;rft.date=2008&amp;rft.volume=14&amp;rft.issue=4&amp;rft.pages=273%E2%80%9380&amp;rft_id=info:doi/10.1016%2Fj.parkreldis.2007.09.007&amp;rft_id=info:pmid/17988927&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-48"><strong><a href="#cite_ref-48"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Flaherty, A.W, (2005). <a class="external text" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;artid=2571074" rel="nofollow"><font color="#3366bb">&quot;Frontotemporal and dopaminergic control of idea generation and creative drive&quot;</font></a>. <em>Journal of Comparative Neurology</em> <strong>493</strong> (1): 147&ndash;153. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1002%2Fcne.20768" rel="nofollow"><font color="#3366bb">10.1002/cne.20768</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16254989" rel="nofollow"><font color="#3366bb">16254989</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Frontotemporal+and+dopaminergic+control+of+idea+generation+and+creative+drive&amp;rft.jtitle=Journal+of+Comparative+Neurology&amp;rft.aulast=Flaherty%2C+A.W%2C&amp;rft.au=Flaherty%2C+A.W%2C&amp;rft.date=2005&amp;rft.volume=493&amp;rft.issue=1&amp;rft.pages=147%E2%80%93153&amp;rft_id=info:doi/10.1002%2Fcne.20768&amp;rft_id=info:pmid/16254989&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-Previc-49">^ <a href="#cite_ref-Previc_49-0"><sup><em><strong><font color="#0645ad" size="2">a</font></strong></em></sup></a> <a href="#cite_ref-Previc_49-1"><sup><em><strong><font color="#0645ad" size="2">b</font></strong></em></sup></a> <a href="#cite_ref-Previc_49-2"><sup><em><strong><font color="#0645ad" size="2">c</font></strong></em></sup></a> Previc F (2009). <em>The Dopaminergic Mind in Human Evolution and History</em> Cambridge University Press. <a class="internal mw-magiclink-isbn" href="/wiki/Special:BookSources/9780521516990"><font color="#0645ad">ISBN 978-0-521-51699-0</font></a>.</li> <li id="cite_note-50"><strong><a href="#cite_ref-50"><font color="#0645ad">^</font></a></strong> Rapoport, S. I. (1990). Integrated phylogeny of the primate brain, with special reference to humans and their diseases. <em>Brain Research Reviews</em>, 15, 267-294.</li> <li id="cite_note-51"><strong><a href="#cite_ref-51"><font color="#0645ad">^</font></a></strong> Raghanti, M. A., Stimpson, C. D., Marcinkiewicz, J. L., Erwin, J. M., Hof, P. R., &amp; Sherwood, C. C. (2008a). Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: A comparative study. <em>Neuroscience</em>, 155, 203-20</li> <li id="cite_note-52"><strong><a href="#cite_ref-52"><font color="#0645ad">^</font></a></strong> <a class="external free" href="http://www.scientificamerican.com/article.cfm?id=interactive-seas-saved-humanity" rel="nofollow"><font color="#3366bb">http://www.scientificamerican.com/article.cfm?id=interactive-seas-saved-humanity</font></a></li> <li id="cite_note-53"><strong><a href="#cite_ref-53"><font color="#0645ad">^</font></a></strong> <span class="citation web"><a class="external text" href="http://www.innovations-report.com/html/reports/life_sciences/report-52499.html" rel="nofollow"><font color="#3366bb">&quot;Disruption of gene interaction linked to schizophrenia&quot;</font></a>. St. Jude Children's Research Hospital<span class="printonly">. <a class="external free" href="http://www.innovations-report.com/html/reports/life_sciences/report-52499.html" rel="nofollow"><font color="#3366bb">http://www.innovations-report.com/html/reports/life_sciences/report-52499.html</font></a></span><span class="reference-accessdate">. Retrieved 2006-07-06</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=Disruption+of+gene+interaction+linked+to+schizophrenia&amp;rft.atitle=&amp;rft.pub=St.+Jude+Children%27s+Research+Hospital&amp;rft_id=http%3A%2F%2Fwww.innovations-report.com%2Fhtml%2Freports%2Flife_sciences%2Freport-52499.html&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-54"><strong><a href="#cite_ref-54"><font color="#0645ad">^</font></a></strong> <a class="external free" href="http://www.williams.edu/imput/synapse/pages/IIIB5.htm" rel="nofollow"><font color="#3366bb">http://www.williams.edu/imput/synapse/pages/IIIB5.htm</font></a></li> <li id="cite_note-55"><strong><a href="#cite_ref-55"><font color="#0645ad">^</font></a></strong> <a class="external free" href="http://bjp.rcpsych.org/cgi/content/full/181/4/271" rel="nofollow"><font color="#3366bb">http://bjp.rcpsych.org/cgi/content/full/181/4/271</font></a></li> <li id="cite_note-56"><strong><a href="#cite_ref-56"><font color="#0645ad">^</font></a></strong> <a class="external free" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T99-3YYTH6C-3P&amp;_user=10&amp;_rdoc=1&amp;_fmt=&amp;_orig=search&amp;_sort=d&amp;view=c&amp;_acct=C000050221&amp;_version=1&amp;_urlVersion=0&amp;_userid=10&amp;md5=7fda10d8dad0b9937580f6371eebb2d5" rel="nofollow"><font color="#3366bb">http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6T99-3YYTH6C-3P&amp;_user=10&amp;_rdoc=1&amp;_fmt=&amp;_orig=search&amp;_sort=d&amp;view=c&amp;_acct=C000050221&amp;_version=1&amp;_urlVersion=0&amp;_userid=10&amp;md5=7fda10d8dad0b9937580f6371eebb2d5</font></a></li> <li id="cite_note-57"><strong><a href="#cite_ref-57"><font color="#0645ad">^</font></a></strong> <a class="external text" href="http://74.125.153.132/search?q=cache:b3pkrTPLeT0J:www.stopmethinflorida.org/documents/Methamphetamine101.ppt+www.stopmethinflorida.org/documents/Methamphetamine101.ppt&amp;cd=1&amp;hl=en&amp;ct=clnk&amp;gl" rel="nofollow"><em><font color="#3366bb">Methamphetamine 101</font></em></a></li> <li id="cite_note-58"><strong><a href="#cite_ref-58"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Lieberman, J.A.; JM Kane, J. Alvir (1997). &quot;Provocative tests with psychostimulant drugs in schizophrenia&quot;. <em>Psychopharmacology (Berl).</em> <strong>91</strong> (4): 415&ndash;433. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1007%2FBF00216006" rel="nofollow"><font color="#3366bb">10.1007/BF00216006</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/2884687" rel="nofollow"><font color="#3366bb">2884687</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Provocative+tests+with+psychostimulant+drugs+in+schizophrenia&amp;rft.jtitle=Psychopharmacology+%28Berl%29.&amp;rft.aulast=Lieberman&amp;rft.aufirst=J.A.&amp;rft.au=Lieberman%2C%26%2332%3BJ.A.&amp;rft.date=1997&amp;rft.volume=91&amp;rft.issue=4&amp;rft.pages=415%E2%80%93433&amp;rft_id=info:doi/10.1007%2FBF00216006&amp;rft_id=info:pmid/2884687&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-59"><strong><a href="#cite_ref-59"><font color="#0645ad">^</font></a></strong> McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ. (2002). Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol. 132(1-2):34-40. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/12417431"><font color="#3366bb">PMID 12417431</font></a></li> <li id="cite_note-60"><strong><a href="#cite_ref-60"><font color="#0645ad">^</font></a></strong> Mignini F, Streccioni V, Amenta F. (2003). Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol. 23(1):1-25. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/14565534"><font color="#3366bb">PMID 14565534</font></a></li> <li id="cite_note-61"><strong><a href="#cite_ref-61"><font color="#0645ad">^</font></a></strong> Basu S, Dasgupta PS. (2000). Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol. 102(2):113-24. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/10636479"><font color="#3366bb">PMID 10636479</font></a></li> <li id="cite_note-62"><strong><a href="#cite_ref-62"><font color="#0645ad">^</font></a></strong> Bergquist J, Tarkowski A, Ekman R, Ewing A. (1994). <a class="external text" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC45550/pdf/pnas01477-0567.pdf" rel="nofollow"><font color="#3366bb">Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop</font></a>. Proc Natl Acad Sci U S A. 91(26):12912-6. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/7809145"><font color="#3366bb">PMID 7809145</font></a></li> <li id="cite_note-63"><strong><a href="#cite_ref-63"><font color="#0645ad">^</font></a></strong> Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S. (2007). <a class="external text" href="http://bloodjournal.hematologylibrary.org/cgi/reprint/109/2/632" rel="nofollow"><font color="#3366bb">Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop.</font></a> Blood. 109(2):632-42. <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/16985181"><font color="#3366bb">PMID 16985181</font></a></li> <li id="cite_note-64"><strong><a href="#cite_ref-64"><font color="#0645ad">^</font></a></strong> Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S. (2010). The immunoregulatory role of dopamine: an update. Brain Behav Immun. 24(4):525-8. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2Fj.bbi.2009.10.015" rel="nofollow"><font color="#3366bb">10.1016/j.bbi.2009.10.015</font></a> <a class="external mw-magiclink-pmid" href="http://www.ncbi.nlm.nih.gov/pubmed/19896530"><font color="#3366bb">PMID 19896530</font></a></li> <li id="cite_note-65"><strong><a href="#cite_ref-65"><font color="#0645ad">^</font></a></strong> <span class="citation web"><a class="external text" href="http://www.circ.ahajournals.org/cgi/content/full/117/2/200" rel="nofollow"><font color="#3366bb">&quot;Renal Vasodilatory Action of Dopamine in Patients With Heart Failure: Magnitude of Effect and Site of Action&quot;</font></a>. Circulation. 2008;117:200-205<span class="printonly">. <a class="external free" href="http://www.circ.ahajournals.org/cgi/content/full/117/2/200" rel="nofollow"><font color="#3366bb">http://www.circ.ahajournals.org/cgi/content/full/117/2/200</font></a></span><span class="reference-accessdate">. Retrieved 2009-04-20</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=Renal+Vasodilatory+Action+of+Dopamine+in+Patients+With+Heart+Failure%3A+Magnitude+of+Effect+and+Site+of+Action&amp;rft.atitle=&amp;rft.pub=Circulation.+2008%3B117%3A200-205&amp;rft_id=http%3A%2F%2Fwww.circ.ahajournals.org%2Fcgi%2Fcontent%2Ffull%2F117%2F2%2F200&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-pharmnemonics-66">^ <a href="#cite_ref-pharmnemonics_66-0"><sup><em><strong><font color="#0645ad" size="2">a</font></strong></em></sup></a> <a href="#cite_ref-pharmnemonics_66-1"><sup><em><strong><font color="#0645ad" size="2">정의b</font></strong></em></sup><br /a><a href="#cite_ref-pharmnemonics_66-히드록시티라민으로서 생리활성 아민2"><sup><em><strong><font color="#0645ad" size="2">c</font></strong></em></sup></a> <span class="citation book">Shen, Howard (2008). <em>Illustrated Pharmacology Memory Cards: PharMnemonics</em>. Minireview. pp.&middotnbsp;카테콜아민의 일종8. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><br font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/1-59541-101-1" href="/wiki/Special:BookSources/1-59541-101-1"><font color="#0645ad">1-59541-101-1</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Illustrated+Pharmacology+Memory+Cards%3A+PharMnemonics&amp;rft.aulast=Shen%2C+Howard&amp;rft.au=Shen%2C+Howard&amp;rft.date=2008&amp;rft.pages=pp.%26nbsp%3B8&amp;rft.pub=Minireview&amp;rft.isbn=1-59541-101-1&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;<br /span></span></li> <liid="cite_note-67"><strong><a href="#cite_ref-67"><font color="#0645ad">^</font></a></strong> <span class="citation web"><a class="external text" href="http://www.drugs.com/pro/dopamine-and-dextrose.html" rel="nofollow"><font color="#3366bb">&quot;Dopamine and Dextrose&quot;</font></a>. Drugs.com<span class="printonly">. <a class="external free" href="http://www.drugs.com/pro/dopamine-and-dextrose.html" rel="nofollow"><font color="#3366bb">http://www.drugs.com/pro/dopamine-and-dextrose.html</font></a></span><span class="text13reference-accessdate">. Retrieved 2009-04-20</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=Dopamine+and+Dextrose&amp;rft.atitle=&amp;rft.pub=Drugs.com&amp;rft_id=http%3A%2F%2Fwww.drugs.com%2Fpro%2Fdopamine-and-dextrose.html&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li> <li id="cite_note-68"><strong><a href="#cite_ref-68"><font color="#0645ad">^</font></a></strong> <a class="external autonumber" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847451/?tool=pmcentrez&amp;report=abstract" rel="nofollow"><font color="#3366bb">[3]</font></a></li> <li id="cite_note-69"><strong><a href="#cite_ref-69"><font color="#0645ad">^</font></a></strong> <a class="external autonumber" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576148/?tool=pmcentrez&amp;report=abstract" rel="nofollow"><font color="#3366bb">[4]</font></a></li> <li id="cite_note-mayer-70"><strong><a href="#cite_ref-mayer_70-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Mayer, AM (2006). &quot;Polyphenol oxidases in plants and fungi: Going places? A review&quot;. <em><a title="Phytochemistry (journal)" href="/wiki/Phytochemistry_(journal)"><font color="#0645ad">Phytochemistry</font></a></em> <strong>67</strong> (21): 2318&ndash;2331. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2Fj.phytochem.2006.08.006" rel="nofollow"><font color="#3366bb">10.1016/j.phytochem.2006.08.006</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16973188" rel="nofollow"><font color="#3366bb">16973188</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Polyphenol+oxidases+in+plants+and+fungi%3A+Going+places%3F+A+review&amp;rft.jtitle=%5B%5BPhytochemistry+%28journal%29%7CPhytochemistry%5D%5D&amp;rft.aulast=Mayer%2C+AM&amp;rft.au=Mayer%2C+AM&amp;rft.date=2006&amp;rft.volume=67&amp;rft.issue=21&amp;rft.pages=2318%E2%80%932331&amp;rft_id=info:doi/10.1016%2Fj.phytochem.2006.08.006&amp;rft_id=info:pmid/16973188&amp;rfr_id=info:sid/en.wikipedia.org:Dopamine"><span style="DISPLAY: none">&nbsp;</span></span></li></ol></div><h2><span id="External_links" class="mw-headline">External links</span></h2><p><table style="BORDER-BOTTOM: #aaa 1px solid; BORDER-LEFT: #aaa 1px solid; BACKGROUND-COLOR: #f9f9f9; BORDER-TOP: #aaa 1px solid; BORDER-RIGHT: #aaa 1px solid" class="metadata mbox-small plainlinks"> <tbody> <tr> <td class="mbox-image"><img alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Wiktionary-logo-en.svg/37px-Wiktionary-logo-en.svg.png" width="37" height="40" /></td> <td class="mbox-text">Look up <em><strong><a class="extiw" title="wiktionary:Dopamine" href="http://en.wiktionary.org/wiki/Dopamine"><font color="#3366bb">Dopamine</font></a></strong></em> in <a title="Wiktionary" href="/wiki/Wiktionary"><font color="#0645ad">Wiktionary</font></a>, the free dictionary.</td> </tr> </tbody></table></p><ul> <li><a title="DrugBank" href="/wiki/DrugBank"><font color="#0645ad">내용DrugBank</font><br /a><a class="external text" href="http://redpoll.pharmacy.ualberta.ca/drugbank/cgi-호르몬이나bin/getCard.cgi?CARD=APRD00085.txt" rel="nofollow"><font color="#3366bb">APRD00085</font></a></li> <li><a class="external text" href="http://druginfo.nlm.nih.gov/drugportal/dpdirect.jsp?name=Dopamine" rel="nofollow"><font color="#0000003366bb"> 신경전달물질로서 중요한 노르에피네프린과 에피네프린 합성체의U.S. National Library of Medicine: Drug Information Portal - Dopamine</font> 전구물질<br /a></li></ul></span><ul> <li><span class="text13"></span></li> <li><span class="text13"></span></li> <li><span class="text13">[[도파민]]<br /> </span></li>
</ul>
0
edits

Navigation menu