Open main menu

Opengenome.net β

Changes

Genetics

21,950 bytes removed, 15:18, 26 February 2008
no edit summary
<p>&nbsp;</p>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 202px"><a class="internal" title="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><img class="thumbimage" height="183" alt="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." width="200" longdesc="/wiki/Image:Sexlinked_inheritance_white.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Sexlinked_inheritance_white.jpg/200px-Sexlinked_inheritance_white.jpg" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>Morgan's observation of sex-linked inheritance of a mutation causing white eyes in <a title="Drosophila" href="http://en.wikipedia.org/wiki/Drosophila">Drosophila</a> led him to the hypothesis that genes are located upon chromosomes.</div>
</div>
</div>
<p><a title="Gregor Johann Mendel" href="http://en.wikipedia.org/wiki/Gregor_Johann_Mendel">Gregor Johann Mendel</a>, a German-Czech <a title="Augustinian" href="http://en.wikipedia.org/wiki/Augustinian">Augustinian</a> monk and scientist, is often called the &quot;father of modern genetics&quot;, a title given to him due to his early work on the heredity of plants. In his paper &quot;Versuche &uuml;ber Pflanzenhybriden&quot; (&quot;<a title="Experiments on Plant Hybridization" href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization">Experiments on Plant Hybridization</a>&quot;), presented in <a title="1865" href="http://en.wikipedia.org/wiki/1865">1865</a> to the Brunn Natural History Society, <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel">Gregor Mendel</a> traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.<sup class="reference" id="_ref-mendel_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel">[3]</a></sup> Although not all features show these patterns of <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance">Mendelian inheritance</a>, his work suggested the utility of the application of statistics to the study of inheritance.</p>
<p>The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word &quot;genetics&quot; itself was coined by William Bateson, a significant proponent of Mendel's work, in a letter to Adam Sedgwick, dated April 18, 1905.<sup class="reference" id="_ref-1">[4]</sup> Bateson promoted the term &quot;genetics&quot; publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.<sup class="reference" id="_ref-bateson_genetics_0">[5]</sup></p>
<p>In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 Thomas Hunt Morgan argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student Alfred Sturtevant used the phenomenon of genetic linkage and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.</p>
</div>
</div>
<p>Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith">Frederick Griffith</a> published his discovery of the phenomenon of <a title="Transformation (genetics)" href="http://en.wikipedia.org/wiki/Transformation_%28genetics%29">transformation</a> (see <a title="Griffith's experiment" href="http://en.wikipedia.org/wiki/Griffith%27s_experiment">Griffith's experiment</a>); sixteen years later, in 1944, <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery">Oswald Theodore Avery</a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod">Colin McLeod</a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty">Maclyn McCarty</a> used this phenomenon to isolate and identify the molecule responsible for transformation as DNA<sup class="reference" id="_ref-dna_transforming_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming">[6]</a></sup>. The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment">Hershey-Chase experiment</a> in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance.</p><p><a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson">James D. Watson</a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick">Francis Crick</a> resolved the structure of DNA in 1953, using <a title="X-ray crystallography" href="http://en.wikipedia.org/wiki/X-ray_crystallography">X-ray crystallography</a> information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a &quot;complement&quot; on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: <em>&quot;It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.&quot;</em></p><p>In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of <a title="DNA sequencing" href="http://en.wikipedia.org/wiki/DNA_sequencing">DNA sequencing</a> in 1977 enabled the determination of nucleotide sequences on DNA,<sup class="reference" id="_ref-sanger_sequencing_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing">[7]</a></sup> and the <a title="PCR" href="http://en.wikipedia.org/wiki/PCR">PCR</a> method developed by <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis">Kary Banks Mullis</a> in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> and parallel private effort by <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics">Celera Genomics</a>, culminated in the sequencing of the human <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> in 2001.</p>
<p><a id="Timeline_of_notable_discoveries" name="Timeline_of_notable_discoveries"></a></p>
<h3><span class="mw-headline">Timeline of notable discoveries</span></h3>
<ul>
<li>1865 Gregor Mendel's paper, <a title="1865" href="http://en.wikipedia.org/wiki/1865"em>1865Experiments on Plant Hybridization</aem> <a titlesup class="Gregor Mendelreference" hrefid="http://en.wikipedia.org/wiki/Gregor_Mendel_ref-mendel_1">Gregor Mendel[3]</asup>'s paper, <em/li> <a title=li>1869 Friedrich Miescher discovers a weak acid in the nuclei of white blood cells that today we call DNA<sup class="Experiments on Plant Hybridizationreference" hrefid="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization_ref-Hartl_and_Jones_1">Experiments on Plant Hybridization[1]</asup></emli> <sup class="reference" id="_refli>1880-mendel_1">1890 Walther Flemming, Eduard Strasburger, and Edouard van Beneden elucidate chromosome distribution during cell division <a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel"li>[3] </li>1903 Walter Sutton hypothesizes that chromosomes, which segregate in a>Mendelian fashion, are hereditary units</sup> </li> <li><a titleclass="1869reference" hrefid="http_ref-100_Years_Ago://en.wikipedia.org/wiki/1869_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0">1869[8]</asup> <a title="Friedrich Miescher" href="http://en.wikipedia.org/wiki/Friedrich_Miescher"li>Friedrich Miescher </ali> discovers a weak acid in 1906 The term &quot;genetics&quot; is proposed by the nuclei of British biologist William Bateson<a titlesup class="Leukocytereference" hrefid="http://en.wikipedia.org/wiki/Leukocyte_ref-bateson_genetics_1">white blood cells[5]</asup> that today we call <a title="DNA" href="http://en.wikipedia.org/wiki/DNA">DNA/li> </ali><sup class="reference" id="_ref-Hartl_and_Jones_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-Hartl_and_Jones">[1]</a></sup> </li> <li><a title="1880" href="http://en.wikipedia.org/wiki/1880">1880</a>-<a title="1890" href="http://en.wikipedia.org/wiki/1890">1890</a> <a title="Walther Flemming" href="http://en.wikipedia.org/wiki/Walther_Flemming">Walther Flemming</a>, <a title="Eduard Strasburger" href="http://en.wikipedia.org/wiki/Eduard_Strasburger">Eduard Strasburger</a>, and <a title="Edouard van Beneden" href="http://en.wikipedia.org/wiki/Edouard_van_Beneden">Edouard van Beneden</a> elucidate chromosome distribution during cell division </li> <li><a title="1903" href="http://en.wikipedia.org/wiki/1903">1903</a> <a title="Walter Sutton" href="http://en.wikipedia.org/wiki/Walter_Sutton">Walter Sutton</a> hypothesizes that chromosomes, which segregate in a Mendelian fashion, are hereditary units<sup class="reference" id="_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity">[8]</a></sup> </li> <li><a title="1906" href="http://en.wikipedia.org/wiki/1906">1906</a> The term &quot;genetics&quot; is proposed by the British biologist <a title="William Bateson" href="http://en.wikipedia.org/wiki/William_Bateson">William Bateson</a><sup class="reference" id="_ref-bateson_genetics_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-bateson_genetics">[5]</a></sup> </li> <li><a title="1910" href="http://en.wikipedia.org/wiki/1910">1910</a> <a title="Thomas Hunt Morgan" href="http://en.wikipedia.org/wiki/Thomas_Hunt_Morgan">Thomas Hunt Morgan</a> shows that genes 1910 Thomas Hunt Morgan shows that genes reside on chromosomes, and discovered linked genes on chromosomes that do not follow Mendel's law of independent allele segregation </li> <li><a title="1913" href="http://en.wikipedia.org/wiki/1913">1913</a> <a title="Alfred Sturtevant" href="http://en.wikipedia.org/wiki/Alfred_Sturtevant">Alfred Sturtevant</a> makes the first <a title="Genetic map" href="http://en.wikipedia.org/wiki/Genetic_map">genetic map</a> of a chromosome, showing genes are linearly arranged </li> <li><a title="1918" href="http://en.wikipedia.org/wiki/1918">1918</a> <a title="Ronald Fisher" href="http://en.wikipedia.org/wiki/Ronald_Fisher">Ronald Fisher</a> publishes &quot;<a title="The Correlation Between Relatives on the Supposition of Mendelian Inheritance" href="http://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance">The Correlation Between Relatives on the Supposition of Mendelian Inheritance</a>&quot; the <a title="Modern synthesis" href="http://en.wikipedia.org/wiki/Modern_synthesis">modern synthesis</a> starts. </li> <li><a title="1928" href="http://en.wikipedia.org/wiki/1928">1928</a> <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith">Frederick Griffith</a> discovers a hereditary molecule that is transmissible between bacteria (see <a title="Griffiths experiment" href="http://en.wikipedia.org/wiki/Griffiths_experiment">Griffiths experiment</a>) </li> <li><a title="1931" href="http://en.wikipedia.org/wiki/1931">1931</a> <a title="Crossing over" href="http://en.wikipedia.org/wiki/Crossing_over">Crossing over</a> is the cause of <a title="Recombination" href="http://en.wikipedia.org/wiki/Recombination">recombination</a> (see <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock">Barbara McClintock</a> and <a title="Cytogenetics" href="http://en.wikipedia.org/wiki/Cytogenetics">cytogenetics</a>) </li> <li><a title="1941" href="http://en.wikipedia.org/wiki/1941">1941</a> <a title="Edward Lawrie Tatum" href="http://en.wikipedia.org/wiki/Edward_Lawrie_Tatum">Edward Lawrie Tatum</a> and <a title="George Wells Beadle" href="http://en.wikipedia.org/wiki/George_Wells_Beadle">George Wells Beadle</a> show that genes code for <a title="Protein" href="http://en.wikipedia.org/wiki/Protein">proteins</a><sup class="reference" id="_ref-2"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-2">[9]</a></sup> </li> <li><a title="1944" href="http://en.wikipedia.org/wiki/1944">1944</a> <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery">Oswald Theodore Avery</a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod">Colin McLeod</a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty">Maclyn McCarty</a> isolate <a title="DNA" href="http://en.wikipedia.org/wiki/DNA">DNA</a> as the genetic material (at that time called <a title="Transforming principle" href="http://en.wikipedia.org/wiki/Transforming_principle">transforming principle</a>)<sup class="reference" id="_ref-dna_transforming_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming">[6]</a></sup> </li> <li><a title="1950" href="http://en.wikipedia.org/wiki/1950">1950</a> <a title="Erwin Chargaff" href="http://en.wikipedia.org/wiki/Erwin_Chargaff">Erwin Chargaff</a> shows that the four nucleotides are not present in nucleic acids in stable proportions, but that some general rules appear to hold (e.g., the nucleotide bases Adenine-Thymine and Cytosine-Guanine always remain in equal proportions). </li> <li><a title="1950" href="http://en.wikipedia.org/wiki/1950">1950</a> <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock">Barbara McClintock</a> discovers <a title="Transposon" href="http://en.wikipedia.org/wiki/Transposon">transposons</a> in <a title="Maize" href="http://en.wikipedia.org/wiki/Maize">maize</a> </li> <li><a title="1952" href="http://en.wikipedia.org/wiki/1952">1952</a> The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment">Hershey-Chase experiment</a> proves the genetic information of <a title="Phage" href="http://en.wikipedia.org/wiki/Phage">phages</a> (and all other organisms) to be DNA </li> <li><a title="1953" href="http://en.wikipedia.org/wiki/1953">1953</a> DNA structure is resolved to be a <a title="Double helix" href="http://en.wikipedia.org/wiki/Double_helix">double helix</a> by <a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson">James D. Watson</a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick">Francis Crick</a>, with the help of <a title="Rosalind Franklin" href="http://en.wikipedia.org/wiki/Rosalind_Franklin">Rosalind Franklin</a><sup class="reference" id="_ref-3"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-3">[10]</a></sup> </li> <li><a title="1956" href="http://en.wikipedia.org/wiki/1956">1956</a> <a title="Joe Hin Tjio" href="http://en.wikipedia.org/wiki/Joe_Hin_Tjio">Joe Hin Tjio</a> and <a title="Albert Levan" href="http://en.wikipedia.org/wiki/Albert_Levan">Albert Levan</a> established the correct chromosome number in humans to be 46 </li> <li><a title="1958" href="http://en.wikipedia.org/wiki/1958">1958</a> The <a title="Meselson-Stahl experiment" href="http://en.wikipedia.org/wiki/Meselson-Stahl_experiment">Meselson-Stahl experiment</a> demonstrates that DNA is <a title="Semiconservative replication" href="http://en.wikipedia.org/wiki/Semiconservative_replication">semiconservatively replicated</a><sup class="reference" id="_ref-4"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-4">[11]</a></sup> </li> <li><a title="1961" href="http://en.wikipedia.org/wiki/1961">1961</a> The <a title="Genetic code" href="http://en.wikipedia.org/wiki/Genetic_code">genetic code</a> is arranged in triplets </li> <li><a title="1964" href="http://en.wikipedia.org/wiki/1964">1964</a> <a title="Howard Temin" href="http://en.wikipedia.org/wiki/Howard_Temin">Howard Temin</a> showed using <a title="RNA virus" href="http://en.wikipedia.org/wiki/RNA_virus">RNA viruses</a> that Watson's <a title="Central dogma" href="http://en.wikipedia.org/wiki/Central_dogma">central dogma</a> is not always true </li> <li><a title="1970" href="http://en.wikipedia.org/wiki/1970">1970</a> <a title="Restriction enzymes" href="http://en.wikipedia.org/wiki/Restriction_enzymes">Restriction enzymes</a> were discovered in studies of a bacterium, <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em>, enabling scientists to cut and paste DNA </li> <li><a title="1972" href="http://en.wikipedia.org/wiki/1972">1972</a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> and his team at the Laboratory of Molecular Biology of the <a title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent">University of Ghent</a> (<a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent">Ghent</a>, <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium">Belgium</a>) were the first to determine the sequence of a gene: the gene for <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2">Bacteriophage MS2</a> coat protein<sup class="reference" id="_ref-5"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-5">[12]</a></sup>. </li> <li><a title="1976" href="http://en.wikipedia.org/wiki/1976">1976</a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> and his team determine the complete nucleotide-sequence of <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2">Bacteriophage MS2</a>-RNA<sup class="reference" id="_ref-6"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-6">[13]</a></sup> </li> <li><a title="1977" href="http://en.wikipedia.org/wiki/1977">1977</a> DNA is <a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing">sequenced</a> for the first time by <a title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger">Fred Sanger</a>, <a title="Walter Gilbert" href="http://en.wikipedia.org/wiki/Walter_Gilbert">Walter Gilbert</a>, and <a title="Allan Maxam" href="http://en.wikipedia.org/wiki/Allan_Maxam">Allan Maxam</a> working independently. Sanger's lab complete the entire genome of sequence of <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">Bacteriophage</a> <a title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage">&Phi;-X174</a><sup class="reference" id="_ref-sanger_sequencing_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing">[7]</a></sup>. </li> <li><a title="1983" href="http://en.wikipedia.org/wiki/1983">1983</a> <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis">Kary Banks Mullis</a> discovers the <a title="Polymerase chain reaction" href="http://en.wikipedia.org/wiki/Polymerase_chain_reaction">polymerase chain reaction</a> enabling the easy amplification of DNA </li> <li><a title="1985" href="http://en.wikipedia.org/wiki/1985">1985</a> <a title="Alec Jeffreys" href="http://en.wikipedia.org/wiki/Alec_Jeffreys">Alec Jeffreys</a> discovers genetic finger printing. </li> <li><a title="1989" href="http://en.wikipedia.org/wiki/1989">1989</a> The first human gene is sequenced by <a title="Francis Collins" href="http://en.wikipedia.org/wiki/Francis_Collins">Francis Collins</a> and <a title="Lap-Chee Tsui" href="http://en.wikipedia.org/wiki/Lap-Chee_Tsui">Lap-Chee Tsui</a>. It encodes the <a title="CFTR" href="http://en.wikipedia.org/wiki/CFTR">CFTR</a> protein. Defects in this gene cause <a title="Cystic fibrosis" href="http://en.wikipedia.org/wiki/Cystic_fibrosis">cystic fibrosis</a> </li> <li><a title="1995" href="http://en.wikipedia.org/wiki/1995">1995</a> The genome of <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em> is the first genome of a free living organism to be sequenced. </li> <li><a title="1996" href="http://en.wikipedia.org/wiki/1996">1996</a> Saccharomyces cerevisiae is the first <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote">eukaryote</a> genome sequence to be released </li> <li><a title="1998" href="http://en.wikipedia.org/wiki/1998">1998</a> The first genome sequence for a multicellular eukaryote, <em><a title="C. elegans" href="http://en.wikipedia.org/wiki/C._elegans">C. elegans</a></em> is released. </li> <li><a title="2001" href="http://en.wikipedia.org/wiki/2001">2001</a> First draft sequences of the human genome are released simultaneously by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> and <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics">Celera Genomics</a>. </li> <li><a title="2003" href="http://en.wikipedia.org/wiki/2003">2003</a> (<a title="April 14" href="http://en.wikipedia.org/wiki/April_14">14 April</a>) Successful completion of <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> with 98% of the genome sequenced to a 99.99% <a title="Accuracy" href="http://en.wikipedia.org/wiki/Accuracy">accuracy</a>.<sup class="reference" id="_ref-7"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-7">[14]</a></sup> </li>
</ul>
<p><a id="Areas_of_genetics" name="Areas_of_genetics"></a></p>
<h2><span class="mw-headline">Areas of genetics</span></h2>
<p><a id="Classical_genetics" name="Classical_genetics"></a>&nbsp;</p>
<h3><span class="mw-headline">Classical genetics</span></h3>
<dl><dd><em>Main articles:</em> <a title="Classical genetics" href="http://en.wikipedia.org/wiki/Classical_genetics">Classical genetics</a>, <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance">Mendelian inheritance</a> </dd></dl><p>Classical genetics consists of the techniques and methodologies of genetics that predate the advent of <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. After the discovery of the genetic code and such tools of <a title="Clone (genetics)" href="http://en.wikipedia.org/wiki/Clone_%28genetics%29">cloning</a> as <a title="Restriction enzyme" href="http://en.wikipedia.org/wiki/Restriction_enzyme">restriction enzymes</a>, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance">Mendel's laws</a> and <a title="Muller's morphs" href="http://en.wikipedia.org/wiki/Muller%27s_morphs">Muller's morphs</a>. Patterns of inheritance still remain a useful tool for the study of <a title="Genetic disease" href="http://en.wikipedia.org/wiki/Genetic_disease">genetic diseases</a>.</p>
<p>&nbsp;</p>
<h3><span class="mw-headline">Behavioral genetics</span></h3>
<dl><dd><em>Main article:</em> <a title="Behavioral genetics" href="http://en.wikipedia.org/wiki/Behavioral_genetics">Behavioral genetics</a> </dd></dl><p>Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection">natural selection</a>, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as <a title="Richard Dawkins" href="http://en.wikipedia.org/wiki/Richard_Dawkins">Richard Dawkins</a> and <a title="W. D. Hamilton" href="http://en.wikipedia.org/wiki/W._D._Hamilton">W. D. Hamilton</a> to propose explanations, including the theories of <a title="Kin selection" href="http://en.wikipedia.org/wiki/Kin_selection">kin selection</a> and <a title="Reciprocal altruism" href="http://en.wikipedia.org/wiki/Reciprocal_altruism">reciprocal altruism</a>. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.</p>
<p>&nbsp;</p>
<h3><span class="mw-headline">Clinical genetics</span></h3>
<dl><dd>
<div class="noprint"><em><a title="Clinical genetics" href="http://en.wikipedia.org/wiki/Clinical_genetics"></a></em></div>
</dd></dl>
<p><a title="Physician" href="http://en.wikipedia.org/wiki/Physician">Physicians</a> who are trained as Geneticists diagnose, treat, and counsel patients with <a title="Genetic disorder" href="http://en.wikipedia.org/wiki/Genetic_disorder">genetic disorders</a> or <a title="Syndrome" href="http://en.wikipedia.org/wiki/Syndrome">syndromes</a>. These doctors are typically trained in a genetics <a title="Residency (medicine)" href="http://en.wikipedia.org/wiki/Residency_%28medicine%29">residency</a> and/or <a title="Fellowship" href="http://en.wikipedia.org/wiki/Fellowship">fellowship</a>.</p>
<p>Clinical genetics is also the study of genetic causes of clinical diseases.</p>
<p><a id="Molecular_genetics" name="Molecular_genetics"></a>&nbsp;</p>
<h3><span class="mw-headline">Molecular genetics</span></h3>
<dl><dd>
<div class="noprint"><em><a title="Molecular genetics" href="http://en.wikipedia.org/wiki/Molecular_genetics"></a></em></div>
</dd></dl>
<p>Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule">molecular</a> level. Molecular genetics employs the methods of both classical genetics (such as <a title="Hybridization" href="http://en.wikipedia.org/wiki/Hybridization">hybridization</a>) and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. It is so-called to differentiate it from other sub fields of genetics such as <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics">ecological genetics</a> and <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics">population genetics</a>. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct <a title="Scientific classification" href="http://en.wikipedia.org/wiki/Scientific_classification">scientific classification</a> of organisms: this is called <a title="Molecular systematics" href="http://en.wikipedia.org/wiki/Molecular_systematics">molecular systematics</a>. The study of inherited features not strictly associated with changes in the <a title="DNA" href="http://en.wikipedia.org/wiki/DNA">DNA</a> sequence is called <a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics">epigenetics</a>.</p><p>Some take the view that <a title="Life" href="http://en.wikipedia.org/wiki/Life">life</a> can be defined, in <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule">molecular</a> terms, as the set of strategies which <a title="RNA" href="http://en.wikipedia.org/wiki/RNA">RNA</a> polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the <a title="Origin of life" href="http://en.wikipedia.org/wiki/Origin_of_life">origin of life</a>, specifically the <a title="RNA world hypothesis" href="http://en.wikipedia.org/wiki/RNA_world_hypothesis">RNA world hypothesis</a>.</p><p><a id="Population.2C_quantitative_and_ecological_genetics" name="Population.2C_quantitative_and_ecological_genetics"></a>&nbsp;</p>
<h3><span class="mw-headline">Population, quantitative and ecological genetics</span></h3>
<dl><dd></dd></dl>
<p>Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying <a title="Population" href="http://en.wikipedia.org/wiki/Population">populations</a> of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in <a title="Allele frequency" href="http://en.wikipedia.org/wiki/Allele_frequency">allele frequencies</a> of genes under the influence of the four evolutionary forces: <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection">natural selection</a>, <a title="Genetic drift" href="http://en.wikipedia.org/wiki/Genetic_drift">genetic drift</a>, <a title="Mutation" href="http://en.wikipedia.org/wiki/Mutation">mutation</a> and <a title="Migration" href="http://en.wikipedia.org/wiki/Migration">migration</a>. It is the theory that attempts to explain such phenomena as <a title="Adaptation (biology)" href="http://en.wikipedia.org/wiki/Adaptation_%28biology%29">adaptation</a> and <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation">speciation</a>.</p><p>The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to <a title="Selection" href="http://en.wikipedia.org/wiki/Selection">selection</a> given data on the <a title="Phenotype" href="http://en.wikipedia.org/wiki/Phenotype">phenotype</a> and relationships of individuals. A more recent development of quantitative genetics is the analysis of <a title="Quantitative trait loci" href="http://en.wikipedia.org/wiki/Quantitative_trait_loci">quantitative trait loci</a>. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the <a title="Chromosome" href="http://en.wikipedia.org/wiki/Chromosome">chromosome</a> requires accurate phenotypic, pedigree and marker data from a large number of related individuals.</p><p>Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on <a title="Ecology" href="http://en.wikipedia.org/wiki/Ecology">ecological</a> issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.</p><p>Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of <a title="Mendelian randomization" href="http://en.wikipedia.org/wiki/Mendelian_randomization">Mendelian randomization</a>.</p>
<p><a id="Genomics" name="Genomics"></a></p>
<h3><span class="mw-headline">Genomics</span></h3>
<dl><dd>
<div class="noprint"><em><a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics"></a></em></div>
</dd></dl>
<p>A more recent development is the rise of <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics">genomics</a>, which attempts the study of large-scale genetic patterns across the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and <a title="Sequence profiling tool" href="http://en.wikipedia.org/wiki/Sequence_profiling_tool">Sequence profiling tool</a> using <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a> approaches for analysis of large sets of data.</p><p><a id="Closely-related_fields" name="Closely-related_fields"></a>&nbsp;</p>
<h3><span class="mw-headline">Closely-related fields</span></h3>
<p>The science which grew out of the union of <a title="Biochemistry" href="http://en.wikipedia.org/wiki/Biochemistry">biochemistry</a> and genetics is widely known as <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. The term &quot;genetics&quot; is often widely conflated with the notion of <a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering">genetic engineering</a>, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics">population genetics</a> and <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics">ecological genetics</a>), rather than genetic engineering.</p><p><a id="References" name="References"></a>&nbsp;</p>
<h2><span class="mw-headline">References</span></h2>
<ol class="references">
<li id="_note-Hartl_and_Jones">^ <sup><em><strong>a title="" href="http:</strong></en.wikipedia.orgem></wiki/Genetics#_ref-Hartl_and_Jones_0"sup><sup><em><strong>ab</strong></em></sup></a> <a title=cite class="book" hrefstyle="httpFONT-STYLE://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_1normal"><sup>Daniel Hartl and Elizabeth Jones (2005). <em><strong>b</strong>Genetics: Analysis of Genes and Genomes, 6th edition</em>. Jones &amp; Bartlett.</supcite></a> <cite span class="bookZ3988" styletitle="FONTctx_ver=Z39.88-STYLE: normal">Daniel Hartl and Elizabeth Jones (2005). <em>Genetics: Analysis of Genes and Genomes, 6th edition</em>. Jones &2004&amp; Bartlett.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=inforft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.title=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.au=Daniel+Hartl+and+Elizabeth+Jones&amp;rft.date=2005&amp;rft.pub=Jones+%26+Bartlett">&nbsp;</span> 854 pages. ISBN 0-7637-1511-5. <a class/li> <li id="internal_note-0" href><strong>^</strong> <cite class="book" style="httpFONT-STYLE://ennormal">Robert C.wikipedia.org/w/indexKing, Willliam D. Stansfield, Pamela K.php?title=Special:Booksources&amp;isbn=0763715115">ISBN 0-7637-1511-5</a>Mulligan (2006). </liem> A Dictionary of Genetics, 7th edition<li id="_note-0"/em>. New York: Oxford University Press.<strong/cite><a titlespan class="Z3988" hreftitle="http://enctx_ver=Z39.wikipedia.org/wiki/Genetics#_ref88-0">^</a></strong> <cite class2004&amp;rft_val_fmt="book" styleinfo%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre="FONT-STYLE: normal">Robert Cbook&amp;rft. King, Willliam D. Stansfield, Pamela Kbtitle=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft. Mulligan (2006). <em>title=A +Dictionary +of +Genetics, %2C+7th +edition</em>&amp;rft. New York: Oxford University Press.</cite><span classau="Z3988" title="ctx_ver=Z39Robert+C.88-2004&amp;rft_val_fmt=info+King%2C+Willliam+D.+Stansfield%3Aofi%2Ffmt%3Akev%3Amtx%3Abook2C+Pamela+K.+Mulligan&amp;rft.genredate=book2006&amp;rft.btitlepub=AOxford+DictionaryUniversity+of+Genetics%2C+7th+editionPress&amp;rft.titleplace=ANew+Dictionary+of+Genetics%2C+7th+editionYork">&ampnbsp;rft</span> 596 pages.auISBN 0-19-530761-5 (paper). </li> <li id=Robert+C.+King%2C+Willliam+D.+Stansfield%2C+Pamela+K.+Mulligan&amp;rft.date=2006&amp;rft.pub=Oxford+University+Press&amp;rft.place=New+York""_note-mendel">^ <sup><em><strong>a</strong></em></sup>&nbsp;</spansup> 596 pages. <a class="internal" href="http:em><strong>b</strong></en.wikipedia.orgem></w/index.php?titlesup> <cite style=Special"FONT-STYLE:Booksources&amp;isbn=0195307615normal">ISBN 0Mendel, G.. &quot;Versuche &uuml;ber Pflanzen-19-530761-5Hybriden&quot;. </aem> (paper)Verh. Naturforsch. Ver. Br&uuml;nn</liem> <strong> 4<li id="_note/strong>: 3-mendel"47.</cite>^ <a titlespan class="Z3988" hreftitle="http://enctx_ver=Z39.wikipedia88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.org/wiki/Genetics#_refatitle=Versuche+%C3%BCber+Pflanzen-mendel_0"><sup><em><strong>a</strong></em></sup></a> <a Hybriden&amp;rft.title="" hrefVerh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.jtitle="http://enVerh.+Naturforsch.wikipedia+Ver.org/wiki/Genetics#_ref-mendel_1"><sup+Br%C3%BCnn&amp;rft.volume=4&amp;rft.au=Mendel%2C+G.&amp;rft.pages=3-47"><em><strong>b&nbsp;</strongspan>(in English in 1901, J. R. Hortic. Soc. 26: 1&ndash;32) </emli> </supli id="_note-1"><strong>^</astrong> Online copy of William Bateson's letter to Adam Sedgwick </li> <cite styleli id="FONT_note-STYLE: normalbateson_genetics">Mendel, G.. &quot;Versuche &uuml;ber Pflanzen-Hybriden&quot;. ^ <emsup>Verh. Naturforsch. Ver. Br&uuml;nn</em> <strong>4a</strong>: 3-47.</citeem></sup> <sup><em><strong>b</strong></em></sup><span classcite style="Z3988" title=FONT-STYLE: normal"ctx_ver=Z39>Bateson, William (1907).88-2004&ampquot;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3AjournalThe Progress of Genetic Research&ampquot;rft.atitle=Versuche+%C3%BCber+Pflanzen-Hybriden&amp;rftWilks, W.title=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.jtitle=Verh.+Naturforsch(editor) <em>Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding</em>, London: Royal Horticultural Society.+Ver</cite><span class="Z3988" title="ctx_ver=Z39.+Br%C3%BCnn88-2004&amp;rft.volumerft_val_fmt=4info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.augenre=Mendel%2C+G.conference&amp;rft.pagesbtitle=3-47">&nbsp;</span> (in English in 1901, J. R. Hortic. Soc. 26: 1&ndash;32) </li> <li id="_noteReport+of+the+Third+1906+International+Conference+on+Genetics%3A+Hybridization+%28the+cross-1"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_refbreeding+of+genera+or+species%29%2C+the+cross-1">^</a></strong> <a classbreeding+of+varieties%2C+and+general+plant+breeding&amp;rft.atitle="external text" title="http://wwwThe+Progress+of+Genetic+Research&amp;rft.jicau=Bateson%2C+William&amp;rft.acdate=1907&amp;rft.uk/corporate/about/bateson.htm" relpub="nofollow" hrefRoyal+Horticultural+Society&amp;rft.place="http://www.jic.ac.uk/corporate/about/bateson.htmLondon">Online copy of William Bateson's letter to Adam Sedgwick&nbsp;</aspan> </lidl> <li id="_note-bateson_genetics"dd>^ <a title="" href="http://enAlthough the conference was titled &quot;International Conference on Hybridisation and Plant Breeding&quot;, Wilks changed the title for publication as a result of Bateson's speech.wikipedia.org</wiki/Genetics#_ref-bateson_genetics_0"dd><sup/dl><em/li> <li id="_note-dna_transforming">^ <sup><em><strong>a</strong></em></sup><sup><em><strong>b</astrong> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_1"><sup><em><strong>b</strong></emem></sup></a> <cite style="FONT-STYLE: normal">BatesonAvery, MacLeod, William and McCarty (19071944). &quot;The Progress Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Genetic ResearchTransformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III&quot;. Wilks, W. (editor) <em>Report Journal of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breedingExperimental Medicine</em>, London: Royal Horticultural Society<strong>79</strong> (1): 137-58.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook3Ajournal&amp;rft.genreatitle=conference&amp;rft.btitle=ReportStudies+ofon+the+ThirdChemical+1906Nature+Internationalof+Conferencethe+onSubstance+Inducing+Transformation+Genetics%3Aof+HybridizationPneumococcal+Types%28the3A+cross-breedingInduction+of+generaTransformation+orby+species%29%2Ca+theDesoxyribonucleic+cross-breedingAcid+ofFraction+varieties%2CIsolated+andfrom+generalPneumococcus+plantType+breedingIII&amp;rft.atitletitle=The+ProgressJournal+of+GeneticExperimental+ResearchMedicine&amp;rft.aujtitle=Bateson%2CJournal+of+Experimental+WilliamMedicine&amp;rft.date=19071944&amp;rft.pubvolume=Royal79&amp;rft.issue=1&amp;rft.au=Avery%2C+HorticulturalMacLeod%2C+and+SocietyMcCarty&amp;rft.placepages=London137-58">&nbsp;</span> <dl><dd>Although the conference was titled &quot;International Conference on Hybridisation and Plant Breeding&quot;, Wilks changed the title for publication as a result of Bateson's speech. </dd></dl></li> <li id="_note-dna_transforming">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_0"><sup><em><strong>a</strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_1"><sup><em><strong>b</strong></em></sup></a> <cite style="FONT-STYLE: normal">Avery, MacLeod, and McCarty (1944). &quot;Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III&quot;. <em>Journal of Experimental Medicine</em> <strong>79</strong> (1): 137-58.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Studies+on+the+Chemical+Nature+of+the+Substance+Inducing+Transformation+of+Pneumococcal+Types%3A+Induction+of+Transformation+by+a+Desoxyribonucleic+Acid+Fraction+Isolated+from+Pneumococcus+Type+III&amp;rft.title=Journal+of+Experimental+Medicine&amp;rft.jtitle=Journal+of+Experimental+Medicine&amp;rft.date=1944&amp;rft.volume=79&amp;rft.issue=1&amp;rft.au=Avery%2C+MacLeod%2C+and+McCarty&amp;rft.pages=137-58">&nbsp;</span><a class="external text" title="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226">35th anniversary reprint available</a> </li> <li id="_note-sanger_sequencing">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_0"><sup><em><strong>a</strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_1"><sup><em><strong>b</strong></em></sup></a> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94 </li> <li id="_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0">^</a></strong> <cite style="FONT-STYLE: normal">Ernest W. Crow and James F. Crow (2002). &quot;<a class="external text" title="http://www.genetics.org/cgi/content/full/160/1/1" rel="nofollow" href="http://www.genetics.org/cgi/content/full/160/1/1">100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity</a>&quot;. <em>Genetics</em> <strong>160</strong>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=100+Years+Ago%3A+Walter+Sutton+and+the+Chromosome+Theory+of+Heredity&amp;rft.title=Genetics&amp;rft.jtitle=Genetics&amp;rft.date=2002&amp;rft.volume=160&amp;rft.au=Ernest+W.+Crow+and+James+F.+Crow&amp;rft_id=http%3A%2F%2Fwww.genetics.org%2Fcgi%2Fcontent%2Ffull%2F160%2F1%2F1">&nbsp;</span> </li> <li id="_note-2"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-2">^</a></strong> <cite style="FONT-STYLE: normal">Beadle GW, Tatum EL (1941). &quot;Genetic control of biochemical reactions in neurospora&quot;. <em>PNAS</em> <strong>27</strong>: 499-506.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Genetic+control+of+biochemical+reactions+in+neurospora&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1941&amp;rft.volume=27&amp;rft.au=Beadle+GW%2C+Tatum+EL&amp;rft.pages=499-506">&nbsp;</span> </li> <li id="_note-3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-3">^</a></strong> <cite style="FONT-STYLE: normal">Watson JD and Crick FH (1953). &quot;Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid&quot;. <em>Nature</em> <strong>171</strong> (4356): 737-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Molecular+structure+of+nucleic+acids%3B+a+structure+for+deoxyribose+nucleic+acid&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1953&amp;rft.volume=171&amp;rft.issue=4356&amp;rft.au=Watson+JD+and+Crick+FH&amp;rft.pages=737-8">&nbsp;</span> </li> <li id="_note-4"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-4">^</a></strong> <cite style="FONT-STYLE: normal">Meselson, M. and Stahl, F.W. (1958). &quot;The Replication of DNA in Escherichia coli&quot;. <em>PNAS</em> <strong>44</strong>: 671-82.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=The+Replication+of+DNA+in+Escherichia+coli&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1958&amp;rft.volume=44&amp;rft.au=Meselson%2C+M.+and+Stahl%2C+F.W.&amp;rft.pages=671-82">&nbsp;</span> </li> <li id="_note-5"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-5">^</a></strong> <cite style="FONT-STYLE: normal">Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). &quot;Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein&quot;. <em>Nature</em> <strong>237</strong> (5350): 82-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Nucleotide+sequence+of+the+gene+coding+for+the+bacteriophage+MS2+coat+protein&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1972&amp;rft.volume=237&amp;rft.issue=5350&amp;rft.au=Min+Jou+W%2C+Haegeman+G%2C+Ysebaert+M%2C+Fiers+W.&amp;rft.pages=82-8">&nbsp;</span> </li> <li id="_note-6"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-6">^</a></strong> <cite style="FONT-STYLE: normal">Fiers W et al. (1976). &quot;Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene&quot;. <em>Nature</em> <strong>260</strong>: 500-507.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Complete+nucleotide-sequence+of+Bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1976&amp;rft.volume=260&amp;rft.au=Fiers+W+et+al.&amp;rft.pages=500-507">&nbsp;</span> </li> <li id="_note-7"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-7">^</a></strong> <a class="external free" title="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf" rel="nofollow" href="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf">http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf</a> </li>
</ol>
<p><a id="See_also" name="See_also"></a>&nbsp;</p>
<h2><span class="mw-headline">See also</span></h2>
<ul>
<li><a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics">Epigenetics</a> </li> <li><a title="Evolution" href="http://en.wikipedia.org/wiki/Evolution">Evolution</a> </li> <li><a title="List of genetics-related topics" href="http://en.wikipedia.org/wiki/List_of_genetics-related_topics">List of genetics-related topics</a> </li> <li><a title="List of genetic engineering topics" href="http://en.wikipedia.org/wiki/List_of_genetic_engineering_topics">List of genetic engineering topics</a> </li> <li><a title="Central dogma of molecular biology" href="http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology">Central dogma of molecular biology</a> </li> <li><a title="Chimera (genetics)" href="http://en.wikipedia.org/wiki/Chimera_%28genetics%29">Chimerism</a> </li> <li><a title="Gene gun" href="http://en.wikipedia.org/wiki/Gene_gun">Gene gun</a> </li> <li><a title="Gene regulatory network" href="http://en.wikipedia.org/wiki/Gene_regulatory_network">Gene regulatory network</a> </li> <li><a title="Genetic counseling" href="http://en.wikipedia.org/wiki/Genetic_counseling">Genetic counseling</a> </li> <li><a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering">Genetic engineering</a> </li> <li><a title="Genetic screen" href="http://en.wikipedia.org/wiki/Genetic_screen">Genetic screen</a> </li> <li><a title="Genetic testing" href="http://en.wikipedia.org/wiki/Genetic_testing">Genetic testing</a> </li> <li><a title="List of publications in biology" href="http://en.wikipedia.org/wiki/List_of_publications_in_biology#Genetics">Important publications in genetics</a> </li> <li><a title="List of genetics research organizations" href="http://en.wikipedia.org/wiki/List_of_genetics_research_organizations">List of genetics research organizations</a> </li> <li><a title="List of geneticists" href="http://en.wikipedia.org/wiki/List_of_geneticists">List of geneticists</a> </li> <li><a title="Human mitochondrial genetics" href="http://en.wikipedia.org/wiki/Human_mitochondrial_genetics">Human mitochondrial genetics</a> </li> <li><a title="Reprogenetics" href="http://en.wikipedia.org/wiki/Reprogenetics">Reprogenetics</a> </li> <li><a title="Punnett square" href="http://en.wikipedia.org/wiki/Punnett_square">Punnett square</a> </li> <li><a title="Genetically modified food" href="http://en.wikipedia.org/wiki/Genetically_modified_food">Genetically modified food</a> </li> <li><a title="Transgenic plants" href="http://en.wikipedia.org/wiki/Transgenic_plants">Transgenic plants</a> </li>
</ul>
<p><a id="Journals" name="Journals"></a>&nbsp;</p>
<h2><span class="mw-headline">Journals</span></h2>
<ul>
<li><em><a title="PLoS Genetics" href="http://en.wikipedia.org/wiki/PLoS_Genetics">PLoS Genetics</a></em> </li>
</ul>
<p><a id="External_link" name="External_link"></a>&nbsp;</p>
<h2><span class="mw-headline">External link</span></h2>
<div class="infobox sisterproject">