0
edits
Changes
From Opengenome.net
no edit summary
<p><span style="FONT-SIZE: 13px; COLOR: #000000; LINE-HEIGHT: 21px; FONT-FAMILY: '바탕'; TEXT-ALIGN: justify"></span><br />
<font color="#0066cc">Biological</font> <strong>evolution</strong> is the change in a <font color="#0066cc">population</font>'s <font color="#0066cc">inherited</font> <font color="#0066cc">traits</font> from generation to generation. These traits are encoded as <font color="#0066cc">genes</font> that are copied and passed on to offspring during <font color="#0066cc">reproduction</font>. <font color="#0066cc">Mutations</font> and other random changes in these genes can produce new or altered traits, resulting in inheritable differences (<font color="#0066cc">genetic variation</font>) between organisms. Evolution occurs when these differences become more common or rare in a population. This either happens through <font color="#0066cc">natural selection</font>, which is caused by differences in the reproductive value of the traits, or randomly through <font color="#0066cc">genetic drift</font>.</p>
<p>Natural selection occurs because organisms with traits that help them survive and reproduce tend to have more offspring. In doing so, they will pass more copies of their inheritable traits on to the next generation. This process causes advantageous traits to become more common over time, while disadvantageous ones become rarer.<sup class="reference" id="_ref-Futuyma_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Futuyma"><font color="#0066cc">[1]</font></a></sup><sup class="reference" id="_ref-0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-0"><font color="#0066cc">[2]</font></a></sup><sup class="reference" id="_ref-1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-1"><font color="#0066cc">[3]</font></a></sup> Over many generations, this process can produce varied <a title="Adaptation" href="http://en.wikipedia.org/wiki/Adaptation"><font color="#0066cc">adaptations</font></a> to environmental conditions.<sup class="reference" id="_ref-understandingevolution_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-understandingevolution"><font color="#0066cc">[4]</font></a></sup> As genetic differences in and between populations of a species accumulate, this <a title="Species" href="http://en.wikipedia.org/wiki/Species"><font color="#0066cc">species</font></a> may split into <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation"><font color="#0066cc">new species</font></a>. The similarities between organisms suggest that all known species are <a title="Common descent" href="http://en.wikipedia.org/wiki/Common_descent"><font color="#0066cc">descended from a single ancestral species</font></a> through this process of gradual divergence.<sup class="reference" id="_ref-Futuyma_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Futuyma"><font color="#0066cc">[1]</font></a></sup><sup class="reference" id="_ref-2"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-2"><font color="#0066cc">[5]</font></a></sup><sup class="reference" id="_ref-3"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-3"><font color="#0066cc">[6]</font></a></sup></p><p>The <a title="Theory" href="http://en.wikipedia.org/wiki/Theory"><font color="#0066cc">theory</font></a> of evolution by natural selection was first put forth in detail in <a title="Charles Darwin" href="http://en.wikipedia.org/wiki/Charles_Darwin"><font color="#0066cc">Charles Darwin</font></a>'s 1859 book <em><a title="The Origin of Species" href="http://en.wikipedia.org/wiki/The_Origin_of_Species"><font color="#0066cc">On the Origin of Species</font></a></em>. In the 1930s, Darwinian natural selection was combined with <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel"><font color="#0066cc">Mendelian</font></a> <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">inheritance</font></a> to form the <a title="Modern evolutionary synthesis" href="http://en.wikipedia.org/wiki/Modern_evolutionary_synthesis"><font color="#0066cc">modern evolutionary synthesis</font></a>.<sup class="reference" id="_ref-understandingevolution_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-understandingevolution"><font color="#0066cc">[4]</font></a></sup> With its enormous explanatory and <a title="Predictive power" href="http://en.wikipedia.org/wiki/Predictive_power"><font color="#0066cc">predictive power</font></a>, this theory has become the central organizing principle of modern biology, providing a unifying explanation for the <a title="Biodiversity" href="http://en.wikipedia.org/wiki/Biodiversity"><font color="#0066cc">diversity of life</font></a> on Earth.<sup class="reference" id="_ref-4"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-4"><font color="#0066cc">[7]</font></a></sup><sup class="reference" id="_ref-5"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-5"><font color="#0066cc">[8]</font></a></sup><sup class="reference" id="_ref-6"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-6"><font color="#0066cc">[9]</font></a></sup></p>
<p> </p>
<h2><span class="mw-headline">History of evolutionary thought</span></h2>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="History of evolutionary thought" href="http://en.wikipedia.org/wiki/History_of_evolutionary_thought"><font color="#0066cc">History of evolutionary thought</font></a>.</em> </dd></dl></div>
<div class="thumb tleft">
<div class="thumbinner" style="WIDTH: 152px"><a class="internal" title="Charles Darwin at age 51, just after publishing The Origin of Species." href="http://en.wikipedia.org/wiki/Image:Charles_Darwin_aged_51_crop.jpg"><img class="thumbimage" height="168" alt="Charles Darwin at age 51, just after publishing The Origin of Species." width="150" longdesc="/wiki/Image:Charles_Darwin_aged_51_crop.jpg" src="http://upload.wikimedia.org/wikipedia/en/thumb/5/58/Charles_Darwin_aged_51_crop.jpg/150px-Charles_Darwin_aged_51_crop.jpg" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Charles_Darwin_aged_51_crop.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div><a title="Charles Darwin" href="http://en.wikipedia.org/wiki/Charles_Darwin"><font color="#0066cc">Charles Darwin</font></a> at age 51, just after publishing <em><a title="The Origin of Species" href="http://en.wikipedia.org/wiki/The_Origin_of_Species"><font color="#0066cc">The Origin of Species</font></a></em>.</div>
</div>
</div>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 155px"><a class="internal" title="Gregor Mendel's work on the inheritance of traits in pea plants laid the foundation for genetics." href="http://en.wikipedia.org/wiki/Image:Mendel.png"><img class="thumbimage" height="204" alt="Gregor Mendel's work on the inheritance of traits in pea plants laid the foundation for genetics." width="153" longdesc="/wiki/Image:Mendel.png" src="http://upload.wikimedia.org/wikipedia/commons/7/76/Mendel.png" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Mendel.png"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div><a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel"><font color="#0066cc">Gregor Mendel</font></a>'s work on the <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">inheritance</font></a> of traits in pea plants laid the foundation for <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics"><font color="#0066cc">genetics</font></a>.</div>
</div>
</div>
<p>Evolutionary ideas such as <a title="Common descent" href="http://en.wikipedia.org/wiki/Common_descent"><font color="#0066cc">common descent</font></a> and the <a title="Transmutation of species" href="http://en.wikipedia.org/wiki/Transmutation_of_species"><font color="#0066cc">transmutation of species</font></a> have existed since at least the 6th century BCE, when they were expounded by the Greek philosopher <a title="Anaximander" href="http://en.wikipedia.org/wiki/Anaximander"><font color="#0066cc">Anaximander</font></a>.<sup class="reference" id="_ref-Osborn_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Osborn"><font color="#0066cc">[10]</font></a></sup> A variety of such ideas developed in the 18th century, and in 1809 <a title="Jean-Baptiste Lamarck" href="http://en.wikipedia.org/wiki/Jean-Baptiste_Lamarck"><font color="#0066cc">Lamarck</font></a> contended that <a title="Transmutation of species" href="http://en.wikipedia.org/wiki/Transmutation_of_species"><font color="#0066cc">transmutation of species</font></a> occurred as parents <a title="Inheritance of acquired characters" href="http://en.wikipedia.org/wiki/Inheritance_of_acquired_characters"><font color="#0066cc">passed on adaptations acquired</font></a> during their lifetimes.<sup class="reference" id="_ref-7"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-7"><font color="#0066cc">[11]</font></a></sup> These ideas were seen in England as a threat to political and religious stability and strongly opposed by the scientific establishment.</p><p>In 1858 <a title="Charles Darwin" href="http://en.wikipedia.org/wiki/Charles_Darwin"><font color="#0066cc">Charles Darwin</font></a> and <a title="Alfred Russel Wallace" href="http://en.wikipedia.org/wiki/Alfred_Russel_Wallace"><font color="#0066cc">Alfred Russel Wallace</font></a> jointly presented the theory of evolution by natural selection to the <a title="Linnean Society of London" href="http://en.wikipedia.org/wiki/Linnean_Society_of_London"><font color="#0066cc">Linnean Society of London</font></a> in <a title="On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection" href="http://en.wikipedia.org/wiki/On_the_Tendency_of_Species_to_form_Varieties%3B_and_on_the_Perpetuation_of_Varieties_and_Species_by_Natural_Means_of_Selection"><font color="#0066cc">separate papers</font></a>.<sup class="reference" id="_ref-8"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-8"><font color="#0066cc">[12]</font></a></sup> This received little attention, but in 1859 the publication of Darwin's <em><a title="The Origin of Species" href="http://en.wikipedia.org/wiki/The_Origin_of_Species"><font color="#0066cc">The Origin of Species</font></a></em> provided detailed support for the theory and led to increasingly wide acceptance that evolution occurred. Darwin's specific ideas about evolution, such as <a title="Gradualism" href="http://en.wikipedia.org/wiki/Gradualism"><font color="#0066cc">gradualism</font></a> and natural selection, were strongly contested at first. <a title="Lamarckism" href="http://en.wikipedia.org/wiki/Lamarckism"><font color="#0066cc">Lamarckists</font></a> argued, for example, that <a title="Waterfowl" href="http://en.wikipedia.org/wiki/Waterfowl"><font color="#0066cc">waterfowl</font></a> acquired webbed feet through their efforts to swim, rather than through a selective process of birds with some skin between their toes out-competing birds with none.<sup class="reference" id="_ref-Osborn_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Osborn"><font color="#0066cc">[10]</font></a></sup> Eventually, when experiments failed to support it, this rival theory was abandoned in favor of Darwinism.</p><p>However, Darwin could not explain how traits were passed down from generation to generation or why variations in traits were not blended together through inheritance. A mechanism was provided in 1865 by <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel"><font color="#0066cc">Gregor Mendel</font></a>, whose research revealed that distinct traits were <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">inherited</font></a> in a well-defined and predictable manner.<sup class="reference" id="_ref-Weiling_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Weiling"><font color="#0066cc">[13]</font></a></sup> When Mendel's work was rediscovered in 1900, disagreements over the rate of evolution predicted by early geneticists and <a title="Biostatistics" href="http://en.wikipedia.org/wiki/Biostatistics"><font color="#0066cc">biometricians</font></a> led to a rift between the Mendelian and Darwinian models of evolution. However, this contradiction was reconciled in the 1930s through the work of biologists such as <a title="Ronald Fisher" href="http://en.wikipedia.org/wiki/Ronald_Fisher"><font color="#0066cc">Ronald Fisher</font></a>. The end result was a combination of Darwinian natural selection with Mendelian inheritance, the <a title="Modern evolutionary synthesis" href="http://en.wikipedia.org/wiki/Modern_evolutionary_synthesis"><font color="#0066cc">modern evolutionary synthesis</font></a>, or "Neo-Darwinism".<sup class="reference" id="_ref-9"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-9"><font color="#0066cc">[14]</font></a></sup> Finally, the identification of <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a> as the genetic material by <a title="Oswald Avery" href="http://en.wikipedia.org/wiki/Oswald_Avery"><font color="#0066cc">Oswald Avery</font></a> in 1944,<sup class="reference" id="_ref-10"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-10"><font color="#0066cc">[15]</font></a></sup> and the subsequent publication of the structure of DNA by <a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson"><font color="#0066cc">James Watson</font></a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick"><font color="#0066cc">Francis Crick</font></a> in 1953,<sup class="reference" id="_ref-Watson_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Watson"><font color="#0066cc">[16]</font></a></sup> demonstrated the physical basis for inheritance. Since then, <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics"><font color="#0066cc">genetics</font></a> and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><font color="#0066cc">molecular biology</font></a> have become central to <a title="Evolutionary biology" href="http://en.wikipedia.org/wiki/Evolutionary_biology"><font color="#0066cc">evolutionary biology</font></a>.<sup class="reference" id="_ref-11"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-11"><font color="#0066cc">[17]</font></a></sup></p>
<p> </p>
<h2><span class="mw-headline">Heredity</span></h2>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 183px"><a class="internal" title="A section of a model of a DNA molecule. Also: animated version" href="http://en.wikipedia.org/wiki/Image:ADN_static.png"><img class="thumbimage" height="313" alt="A section of a model of a DNA molecule. Also: animated version" width="181" longdesc="/wiki/Image:ADN_static.png" src="http://upload.wikimedia.org/wikipedia/en/c/c2/ADN_static.png" /></a><div class="thumbcaption">A section of a model of a DNA molecule.<sup class="reference" id="_ref-12"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-12"><font color="#0066cc">[18]</font></a></sup> Also: <a title="Image:ADN animation.gif" href="http://en.wikipedia.org/wiki/Image:ADN_animation.gif"><font color="#0066cc">animated version</font></a></div>
</div>
</div>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Introduction to genetics" href="http://en.wikipedia.org/wiki/Introduction_to_genetics"><font color="#0066cc">Introduction to genetics</font></a>, <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics"><font color="#0066cc">Genetics</font></a>, and <a title="Heredity" href="http://en.wikipedia.org/wiki/Heredity"><font color="#0066cc">Heredity</font></a>.</em> </dd></dl></div><p>Gregor Mendel's work on pea plants provided the first firm demonstration that heredity occurred in discrete units.<sup class="reference" id="_ref-Weiling_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Weiling"><font color="#0066cc">[13]</font></a></sup> He was able to show that the traits were inherited from parent to offspring and that traits were discrete, since if one parent had round peas and the other wrinkled, the progeny were not intermediate, but either round or wrinkled. He also showed that the traits of the parents were distributed to progeny in a well-defined and predictable manner, which is now called <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">Mendelian inheritance</font></a>. His research laid the foundation for the concept of discrete heritable <a title="Trait (biology)" href="http://en.wikipedia.org/wiki/Trait_%28biology%29"><font color="#0066cc">traits</font></a>, known today as <a title="Gene" href="http://en.wikipedia.org/wiki/Gene"><font color="#0066cc">genes</font></a>.<sup class="reference" id="_ref-Pearson_2006_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Pearson_2006"><font color="#0066cc">[19]</font></a></sup> Mendel's ideas replaced the notion of "blending inheritance" prevalent at the time Darwin wrote <em>The Origin of Species</em>, and answered the long-standing problem of the persistence of variation within populations.</p><p>Later research gave a physical basis to the notion of genes, and eventually identified <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a> as the heritable material, with genes re-defined as regions within this DNA.<sup class="reference" id="_ref-Pearson_2006_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Pearson_2006"><font color="#0066cc">[19]</font></a></sup> <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a> is stored within <a title="Chromosome" href="http://en.wikipedia.org/wiki/Chromosome"><font color="#0066cc">chromosomes</font></a> in organisms and a specific location on a <a title="Chromosome" href="http://en.wikipedia.org/wiki/Chromosome"><font color="#0066cc">chromosome</font></a> is known as a <a title="Locus (genetics)" href="http://en.wikipedia.org/wiki/Locus_%28genetics%29"><font color="#0066cc">locus</font></a>, with a variant of a DNA sequence at a given locus called an <a title="Allele" href="http://en.wikipedia.org/wiki/Allele"><font color="#0066cc">allele</font></a>. DNA is not copied perfectly, and changes (mutations) in genes produce new alleles and thus affect the traits that the genes control. This simple correspondence between a gene and a trait works in many cases, although complex traits such as disease resistance are controlled by <a title="Quantitative trait locus" href="http://en.wikipedia.org/wiki/Quantitative_trait_locus"><font color="#0066cc">multiple interacting genes</font></a>.<sup class="reference" id="_ref-13"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-13"><font color="#0066cc">[20]</font></a></sup><sup class="reference" id="_ref-Lin_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Lin"><font color="#0066cc">[21]</font></a></sup></p><p>Apart from mutations, other way changes in genes can influence traits is through <a title="DNA" href="http://en.wikipedia.org/wiki/DNA#Base_modifications"><font color="#0066cc">DNA modifications</font></a> such as <a title="DNA methylation" href="http://en.wikipedia.org/wiki/DNA_methylation"><font color="#0066cc">DNA methylation</font></a>, which do not change the sequence of the DNA in a gene, but cause an <a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics"><font color="#0066cc">inherited change</font></a> in the use of that gene.<sup class="reference" id="_ref-14"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-14"><font color="#0066cc">[22]</font></a></sup> Non-DNA based forms of heritable variation exist, such as transmission of the secondary structures of <a title="Prion" href="http://en.wikipedia.org/wiki/Prion"><font color="#0066cc">prions</font></a> in <a title="Yeast" href="http://en.wikipedia.org/wiki/Yeast"><font color="#0066cc">yeast</font></a>,<sup class="reference" id="_ref-15"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-15"><font color="#0066cc">[23]</font></a></sup> or <a title="Structural inheritance" href="http://en.wikipedia.org/wiki/Structural_inheritance"><font color="#0066cc">structural inheritance</font></a> of patterns in the rows of cilia in protozoans such as <em>Paramecium</em><sup class="reference" id="_ref-16"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-16"><font color="#0066cc">[24]</font></a></sup> and <em>Tetrahymena</em>.<sup class="reference" id="_ref-17"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-17"><font color="#0066cc">[25]</font></a></sup> However, it is unclear if these mechanisms produce specific heritable changes in response to the environment. If this does occur, then some instances of evolution would be separate from standard genetic inheritance, which avoids any connection between the environment and the production of heritable variation.<sup class="reference" id="_ref-18"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-18"><font color="#0066cc">[26]</font></a></sup> However, the processes that produce these variations are rather rare and often reversible, so their significance to evolution remains unclear.<sup class="reference" id="_ref-19"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-19"><font color="#0066cc">[27]</font></a></sup></p>
<p> </p>
<h2><span class="mw-headline">Variation</span></h2>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Genetic variation" href="http://en.wikipedia.org/wiki/Genetic_variation"><font color="#0066cc">Genetic variation</font></a> and <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics"><font color="#0066cc">Population genetics</font></a>.</em> </dd></dl></div><p>Variation comes from <a title="Mutation" href="http://en.wikipedia.org/wiki/Mutation"><font color="#0066cc">mutations</font></a> in <a title="Genetic material" href="http://en.wikipedia.org/wiki/Genetic_material"><font color="#0066cc">genetic material</font></a>, migration between populations (<a title="Gene flow" href="http://en.wikipedia.org/wiki/Gene_flow"><font color="#0066cc">gene flow</font></a>), and the reshuffling of genes during <a title="Sexual reproduction" href="http://en.wikipedia.org/wiki/Sexual_reproduction"><font color="#0066cc">sexual reproduction</font></a> (<a title="Genetic recombination" href="http://en.wikipedia.org/wiki/Genetic_recombination"><font color="#0066cc">genetic recombination</font></a>). In some organisms, like bacteria and plants, variation is also produced by the mixing of genetic material between different species in <a title="Horizontal gene transfer" href="http://en.wikipedia.org/wiki/Horizontal_gene_transfer"><font color="#0066cc">horizontal gene transfer</font></a> and <a title="Hybrid" href="http://en.wikipedia.org/wiki/Hybrid"><font color="#0066cc">hybridization</font></a>.<sup class="reference" id="_ref-20"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-20"><font color="#0066cc">[28]</font></a></sup><sup class="reference" id="_ref-21"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-21"><font color="#0066cc">[29]</font></a></sup> Despite all the processes that introduce variation, most sites in the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome"><font color="#0066cc">genome</font></a> of a species are identical in all individuals of this species.<sup class="reference" id="_ref-22"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-22"><font color="#0066cc">[30]</font></a></sup> However, relatively small changes in genotype can lead to dramatic changes in phenotype, with chimpanzees and humans, for example only differing in about 5% of their genomes.<sup class="reference" id="_ref-23"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-23"><font color="#0066cc">[31]</font></a></sup></p><p>The heritable portion of an individual's traits, their <a title="Phenotype" href="http://en.wikipedia.org/wiki/Phenotype"><font color="#0066cc">phenotype</font></a>, results from the interaction of their specific genetic makeup, or <a title="Genotype" href="http://en.wikipedia.org/wiki/Genotype"><font color="#0066cc">genotype</font></a> with the environment.<sup class="reference" id="_ref-Lin_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Lin"><font color="#0066cc">[21]</font></a></sup> Thus, the variation in heritable traits within a population reflects the variation in this population's genetic makeup. The <a title="Modern evolutionary synthesis" href="http://en.wikipedia.org/wiki/Modern_evolutionary_synthesis"><font color="#0066cc">modern evolutionary synthesis</font></a> defines evolution as the change over time in the relative <a title="Allele frequency" href="http://en.wikipedia.org/wiki/Allele_frequency"><font color="#0066cc">frequencies of alleles</font></a> in a population.<sup class="reference" id="_ref-24"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-24"><font color="#0066cc">[32]</font></a></sup> The frequency of these variants may fluctuate in the population, becoming more or less prevalent relative to other alleles of that gene. All evolutionary forces act by driving these changes in allele frequency in one direction or another. Variation disappears when an allele reaches the point of <a title="Fixation (population genetics)" href="http://en.wikipedia.org/wiki/Fixation_%28population_genetics%29"><font color="#0066cc">fixation</font></a> — when it either disappears from the population, or when it replaces the ancestral allele entirely.<sup class="reference" id="_ref-Amos_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Amos"><font color="#0066cc">[33]</font></a></sup></p>
<p> </p>
<h3><span class="mw-headline">Mutation</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Mutation" href="http://en.wikipedia.org/wiki/Mutation"><font color="#0066cc">Mutation</font></a>.</em> </dd></dl></div>
<div class="thumb tleft">
<div class="thumbinner" style="WIDTH: 152px"><a class="internal" title="Mutation can occur because of "copy errors" during DNA replication" href="http://en.wikipedia.org/wiki/Image:Dna-split.png"><img class="thumbimage" height="295" alt="Mutation can occur because of "copy errors" during DNA replication" width="150" longdesc="/wiki/Image:Dna-split.png" src="http://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Dna-split.png/150px-Dna-split.png" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Dna-split.png"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>
Mutation can occur because of "copy errors" during DNA replication</div>
</div>
</div>
<p>Genetic variation arises due to <a title="Randomness" href="http://en.wikipedia.org/wiki/Randomness"><font color="#0066cc">random</font></a> mutations that occur in the <a titlefont color="Genome#0066cc" href="http://en.wikipedia.org/wiki/Genome"><font color="#0066cc">genomes>genomes</font></a> of all organisms. Mutations are transmissible changes in <a titlefont color="Genetic material" href="http://en.wikipedia.org/wiki/Genetic_material"><font color="#0066cc#0066cc">genetic material</font></a>, and are often caused by mutagens such as <a title="Radioactive decay" href="http://en.wikipedia.org/wiki/Radioactive_decay"><font color="#0066cc">radiation</font></a> and <a title="Mutagen" href="http://en.wikipedia.org/wiki/Mutagen"><font color="#0066cc">mutagenic chemicals</font></a>, as well as errors that occur during <a title="DNA replication" href="http://en.wikipedia.org/wiki/DNA_replication"><font color="#0066cc">DNA replication</font></a>.<sup class="reference" id="_ref-Bertram_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Bertram"><font color="#0066cc">[34]</font></a></sup> <a title="Virus" href="http://en.wikipedia.org/wiki/Virus"><font color="#0066cc">Viruses</font></a> and mobile DNA sequences such as <a title="Transposon" href="http://en.wikipedia.org/wiki/Transposon"><font color="#0066cc">transposons</font></a>, are another cause of mutations.<sup class="reference" id="_ref-25"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-25"><font color="#0066cc">[35]</font></a></sup><sup class="reference" id="_ref-Burrus_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Burrus"><font color="#0066cc">[36]</font></a></sup> In multicellular organisms, mutations can be classified into <em>germline mutations</em> that occur in the <a title="Gamete" href="http://en.wikipedia.org/wiki/Gamete"><font color="#0066cc">gametes</font></a> and thus can be passed onto offspring, and <em>somatic mutations</em> that can cause the malfunction or death of cells and can also cause <a title="Cancer" href="http://en.wikipedia.org/wiki/Cancer"><font color="#0066cc">cancer</font></a>.<sup class="reference" id="_ref-Bertram_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Bertram"><font color="#0066cc">[34]</font></a></sup> Organisms have therefore evolved multiple mechanisms such as <a title="DNA repair" href="http://en.wikipedia.org/wiki/DNA_repair"><font color="#0066cc">DNA repair</font></a> that reduce mutation rates, although the optimal mutation rate for a species is a trade-off between costs such as the energy expended on DNA repair and the effects of deleterious mutations, and the benefits of advantageous mutations.<sup class="reference" id="_ref-Sniegowski_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Sniegowski"><font color="#0066cc">[37]</font></a></sup> Organisms such as bacteria can even increase their mutation rate in response to stress, leading to the evolution of novel genes that counter the source of stress.<sup class="reference" id="_ref-26"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-26"><font color="#0066cc">[38]</font></a></sup></p><p>Individual genes can be affected by two different types of mutations. In <a title="Point mutation" href="http://en.wikipedia.org/wiki/Point_mutation"><font color="#0066cc">point mutations</font></a>, a single <a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair"><font color="#0066cc">base pair</font></a> is altered. This change in a single base pair may or may not affect the function of the gene. The other type of mutations are the deletion and insertion of base pairs. These changes usually cause a loss of the gene's function, as they cause a shift in <a title="Reading frame" href="http://en.wikipedia.org/wiki/Reading_frame"><font color="#0066cc">reading frame</font></a> and thus change many amino acid codons simultaneously.<sup class="reference" id="_ref-27"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-27"><font color="#0066cc">[39]</font></a></sup></p><p><a title="Gene duplication" href="http://en.wikipedia.org/wiki/Gene_duplication"><font color="#0066cc">Gene duplications</font></a>, which may occur via a number of mechanisms, are believed to be one major source of raw material for evolving new genes, as tens to hundreds of genes are duplicated in animal genomes every million years.<sup class="reference" id="_ref-28"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-28"><font color="#0066cc">[40]</font></a></sup> Most genes belong to larger <a title="Gene family" href="http://en.wikipedia.org/wiki/Gene_family"><font color="#0066cc">families of genes</font></a> that are derived from one or more ancestral genes.<sup class="reference" id="_ref-29"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-29"><font color="#0066cc">[41]</font></a></sup> Novel genes can be produced either through duplication and divergence of an ancestral gene, or the recombination of <a title="Protein domains" href="http://en.wikipedia.org/wiki/Protein_domains"><font color="#0066cc">protein domains</font></a> to form a new combination of these structural modules.<sup class="reference" id="_ref-30"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-30"><font color="#0066cc">[42]</font></a></sup><sup class="reference" id="_ref-31"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-31"><font color="#0066cc">[43]</font></a></sup> The duplication of genomes to produce <a title="Polyploidy" href="http://en.wikipedia.org/wiki/Polyploidy"><font color="#0066cc">polyploid</font></a> organisms also appears to have been important in evolution, particularly in plants.<sup class="reference" id="_ref-Wendel_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Wendel"><font color="#0066cc">[44]</font></a></sup></p><p>Large chromosomal rearrangements do not necessarily change gene function, but can result in reproductive isolation, and therefore cause <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation"><font color="#0066cc">speciation</font></a>.<sup class="reference" id="_ref-32"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-32"><font color="#0066cc">[45]</font></a></sup> An example of chromosomal rearrangements is the fusion of two chromosomes in the <a title="Homo (genus)" href="http://en.wikipedia.org/wiki/Homo_%28genus%29"><em><font color="#0066cc">Homo</font></em></a> genus that produced human chromosome 2; this fusion did not occur in the <a title="Chimpanzee" href="http://en.wikipedia.org/wiki/Chimpanzee"><font color="#0066cc">chimpanzee</font></a> <a title="Lineage (evolution)" href="http://en.wikipedia.org/wiki/Lineage_%28evolution%29"><font color="#0066cc">lineage</font></a>, and chimpanzees retain two separate chromosomes.<sup class="reference" id="_ref-33"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-33"><font color="#0066cc">[46]</font></a></sup> However, in this case, chromosomal rearrangements do not appear to have driven the divergence of the human and chimpanzee lineages.<sup class="reference" id="_ref-34"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-34"><font color="#0066cc">[47]</font></a></sup></p>
<p> </p>
<h3><span class="mw-headline">Recombination</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Genetic recombination" href="http://en.wikipedia.org/wiki/Genetic_recombination"><font color="#0066cc">Genetic recombination</font></a>.</em> </dd></dl></div><p>In asexual organisms, variants in genes on the same chromosome will always be inherited together—they are <em>linked</em>, as they are joined together in the same DNA molecule. However, <a title="Sex" href="http://en.wikipedia.org/wiki/Sex"><font color="#0066cc">sexual</font></a> organisms, can exchange DNA between two matching chromosomes in a process called <a title="Genetic recombination" href="http://en.wikipedia.org/wiki/Genetic_recombination"><font color="#0066cc">genetic recombination</font></a>.<sup class="reference" id="_ref-35"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-35"><font color="#0066cc">[48]</font></a></sup> This shuffling of genetic material between chromosomes allows even alleles of genes that are close together in the genome to be <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance#Mendel.27s_law_of_segregation"><font color="#0066cc">inherited independently</font></a>. However, the recombination rate is not very high and in humans is approximately one recombination event per 1,000,000 base pairs.<sup class="reference" id="_ref-36"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-36"><font color="#0066cc">[49]</font></a></sup> Therefore, linked alleles are not always shuffled away from each other, but tend to be inherited together. This tendency is measured by comparing the co-occurrence of two alleles, their <a title="Linkage disequilibrium" href="http://en.wikipedia.org/wiki/Linkage_disequilibrium"><font color="#0066cc">linkage disequilibrium</font></a>. A set of alleles that are often inherited together is called a <a title="Haplotype" href="http://en.wikipedia.org/wiki/Haplotype"><font color="#0066cc">haplotype</font></a> and this co-inheritance can indicate that the locus is under positive selection.<sup class="reference" id="_ref-37"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-37"><font color="#0066cc">[50]</font></a></sup></p><p>Recombination in sexual organisms allows disadvantageous mutations to be purged and beneficial mutations to be retained more efficiently than in asexual organisms.<sup class="reference" id="_ref-Otto_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Otto"><font color="#0066cc">[51]</font></a></sup> However, recombination can also lead to more individuals with new and advantageous gene combinations being produced. These benefits can be identified by looking at the effects of situations where alleles cannot be separated by recombination (for example in mammalian <a title="Y chromosome" href="http://en.wikipedia.org/wiki/Y_chromosome"><font color="#0066cc">Y chromosomes</font></a>).<sup class="reference" id="_ref-38"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-38"><font color="#0066cc">[52]</font></a></sup> In these situations, there is a reduction in <a title="Effective population size" href="http://en.wikipedia.org/wiki/Effective_population_size"><font color="#0066cc">effective population size</font></a> called the <a title="Hill-Robertson effect" href="http://en.wikipedia.org/wiki/Hill-Robertson_effect"><font color="#0066cc">Hill-Robertson effect</font></a>,<sup class="reference" id="_ref-39"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-39"><font color="#0066cc">[53]</font></a></sup> which causes the <a title="Muller's ratchet" href="http://en.wikipedia.org/wiki/Muller%27s_ratchet"><font color="#0066cc">accumulation of deleterious mutations</font></a>.<sup class="reference" id="_ref-40"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-40"><font color="#0066cc">[54]</font></a></sup> These positive effects of recombination are balanced by the facts that it can cause mutations (as it involves the breaking and rejoining of the DNA strands) and it can also separate gene combinations that have been successful in previous generations.<sup class="reference" id="_ref-Otto_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Otto"><font color="#0066cc">[51]</font></a></sup> The optimal rate of recombination for a species is therefore a trade-off between these conflicting factors.</p>
<p> </p>
<h3><span class="mw-headline">Gene flow</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Gene flow" href="http://en.wikipedia.org/wiki/Gene_flow"><font color="#0066cc">Gene flow</font></a>, <a title="Hybrid" href="http://en.wikipedia.org/wiki/Hybrid"><font color="#0066cc">Hybrid</font></a>, and <a title="Horizontal gene transfer" href="http://en.wikipedia.org/wiki/Horizontal_gene_transfer"><font color="#0066cc">Horizontal gene transfer</font></a>.</em> </dd></dl></div>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 352px"><a class="internal" title="Map of the world showing distribution of camelids. Solid black lines indicate possible migration routes." href="http://en.wikipedia.org/wiki/Image:Evolution_evi_mig.png"><img class="thumbimage" height="180" alt="Map of the world showing distribution of camelids. Solid black lines indicate possible migration routes." width="350" longdesc="/wiki/Image:Evolution_evi_mig.png" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/Evolution_evi_mig.png/350px-Evolution_evi_mig.png" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Evolution_evi_mig.png"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>Map of the world showing distribution of <a title="Camelid" href="http://en.wikipedia.org/wiki/Camelid"><font color="#0066cc">camelids</font></a>. Solid black lines indicate possible migration routes.</div>
</div>
</div>
<p><a title="Gene flow" href="http://en.wikipedia.org/wiki/Gene_flow"><font color="#0066cc">Gene flow</font></a> is the exchange of genes between populations, most commonly of the same species.<sup class="reference" id="_ref-41"><a titlefont color="#0066cc" href="http://en.wikipedia.org/wiki/Evolution#_note-41"><font color="#0066cc">[>[55]</font></a></sup> Examples include the migration of organisms and the exchange of <a title="Pollen" href="http://en.wikipedia.org/wiki/Pollen"><font color="#0066cc">pollen</font></a> within a species, as well as hybridization and horizontal gene transfer between species.</p><p><a title="Migration" href="http://en.wikipedia.org/wiki/Migration"><font color="#0066cc">Migration</font></a> into or out of a population can change allele frequencies. Immigration may add new genetic material to the established <a title="Gene pool" href="http://en.wikipedia.org/wiki/Gene_pool"><font color="#0066cc">gene pool</font></a> of a population. Conversely, emigration may remove genetic material. As <a title="Reproductive isolation" href="http://en.wikipedia.org/wiki/Reproductive_isolation"><font color="#0066cc">reproductive isolation</font></a> is required for <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation"><font color="#0066cc">speciation</font></a>, gene flow may delay speciation by homogenizing two diverging populations. Gene flow is hindered by impassable mountain ranges, oceans and deserts or even the <a title="Great Wall of China" href="http://en.wikipedia.org/wiki/Great_Wall_of_China"><font color="#0066cc">Great Wall of China</font></a>, which has hindered the flow of plant genes.<sup class="reference" id="_ref-42"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-42"><font color="#0066cc">[56]</font></a></sup></p><p>Depending on how far two species have diverged since their <a title="Last common ancestor" href="http://en.wikipedia.org/wiki/Last_common_ancestor"><font color="#0066cc">last common ancestor</font></a>, it may still be possible for them to produce viable offspring, as with <a title="Horse" href="http://en.wikipedia.org/wiki/Horse"><font color="#0066cc">horses</font></a> and <a title="Donkey" href="http://en.wikipedia.org/wiki/Donkey"><font color="#0066cc">donkeys</font></a> mating to produce <a title="Mule" href="http://en.wikipedia.org/wiki/Mule"><font color="#0066cc">mules</font></a>.<sup class="reference" id="_ref-43"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-43"><font color="#0066cc">[57]</font></a></sup> Such <a title="Hybrid" href="http://en.wikipedia.org/wiki/Hybrid"><font color="#0066cc">hybrids</font></a> are generally <a title="Infertility" href="http://en.wikipedia.org/wiki/Infertility"><font color="#0066cc">infertile</font></a>, due to mispairings of chromosomes during <a title="Meiosis" href="http://en.wikipedia.org/wiki/Meiosis"><font color="#0066cc">meiosis</font></a>. In this case, closely-related species may regularly interbreed, but hybrids will be selected against and the populations will remain distinct. This has been noted in toads, butterflies, clams and mussels. Selection against hybrids may produce traits that increase reluctance to mate outside the species and <a title="Character displacement" href="http://en.wikipedia.org/wiki/Character_displacement"><font color="#0066cc">character displacement</font></a>.<sup class="reference" id="_ref-44"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-44"><font color="#0066cc">[58]</font></a></sup> However, viable hybrids can also be formed and these new species can either have properties intermediate between their parent species, or a radically different phenotype.<sup class="reference" id="_ref-45"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-45"><font color="#0066cc">[59]</font></a></sup> Although hybridization rarely leads to <a title="Hybrid speciation" href="http://en.wikipedia.org/wiki/Hybrid_speciation"><font color="#0066cc">new species</font></a> in animals, this is an important means of speciation in plants.<sup class="reference" id="_ref-Wendel_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Wendel"><font color="#0066cc">[44]</font></a></sup> <a title="Polyploidy" href="http://en.wikipedia.org/wiki/Polyploidy"><font color="#0066cc">Polyploidy</font></a>, having more than two copies of each chromosome, is tolerated in plants more readily than in animals. The major advantage to a hybrid becoming polyploid is that it allows reproduction, as the different sets of chromosomes will be able to pair during meiosis.<sup class="reference" id="_ref-46"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-46"><font color="#0066cc">[60]</font></a></sup> Polypolids also have more genetic diversity, which allows them to resist the effects of <a title="Inbreeding" href="http://en.wikipedia.org/wiki/Inbreeding"><font color="#0066cc">inbreeding</font></a>.<sup class="reference" id="_ref-47"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-47"><font color="#0066cc">[61]</font></a></sup></p><p>Horizontal gene transfer is the transfer of genetic material from one organism to another organism that is not its offspring. Horizontal gene transfer is common among <a title="Bacterium" href="http://en.wikipedia.org/wiki/Bacterium"><font color="#0066cc">bacteria</font></a>, even very distantly-related species.<sup class="reference" id="_ref-48"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-48"><font color="#0066cc">[62]</font></a></sup> In medicine, this contributes to the spread of <a title="Antibiotic resistance" href="http://en.wikipedia.org/wiki/Antibiotic_resistance"><font color="#0066cc">antibiotic resistance</font></a>, as when one bacteria acquires resistance genes it can transfer them to many other species.<sup class="reference" id="_ref-49"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-49"><font color="#0066cc">[63]</font></a></sup> Horizontal transfer of genes from bacteria to eukaryotes such as the yeast <em><a title="Saccharomyces cerevisiae" href="http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae"><font color="#0066cc">Saccharomyces cerevisiae</font></a></em> and the adzuki bean beetle <em>Callosobruchus chinensis</em> may also have occurred.<sup class="reference" id="_ref-50"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-50"><font color="#0066cc">[64]</font></a></sup><sup class="reference" id="_ref-51"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-51"><font color="#0066cc">[65]</font></a></sup> <a title="Virus" href="http://en.wikipedia.org/wiki/Virus"><font color="#0066cc">Viruses</font></a> can also carry DNA between organisms, allowing transfer of genes even across <a title="Domain (biology)" href="http://en.wikipedia.org/wiki/Domain_%28biology%29"><font color="#0066cc">biological domains</font></a>.<sup class="reference" id="_ref-52"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-52"><font color="#0066cc">[66]</font></a></sup></p><p>Horizontal gene transfer has also occurred within <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote"><font color="#0066cc">eukaryotes</font></a>, from their chloroplast and mitochondrial genome to their nuclear genome.<sup class="reference" id="_ref-53"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-53"><font color="#0066cc">[67]</font></a></sup> According to <a title="Endosymbiotic theory" href="http://en.wikipedia.org/wiki/Endosymbiotic_theory"><font color="#0066cc">endosymbiotic theory</font></a>, chloroplasts and mitochondria probably originated as bacterial <a title="Endosymbiont" href="http://en.wikipedia.org/wiki/Endosymbiont"><font color="#0066cc">endosymbionts</font></a> of a progenitor to the eukaryotic cell.<sup class="reference" id="_ref-Dyall_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Dyall"><font color="#0066cc">[68]</font></a></sup> Horizontal gene transfer complicates <a title="Phylogenetics" href="http://en.wikipedia.org/wiki/Phylogenetics"><font color="#0066cc">phylogenetics</font></a>, since it produces genetic connections between distantly-related species.<sup class="reference" id="_ref-54"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-54"><font color="#0066cc">[69]</font></a></sup></p>
<p> </p>
<h2><span class="mw-headline">Mechanisms of evolution</span></h2>
<p>The two basic mechanisms of evolutionary change—the change in <a title="Allele frequency" href="http://en.wikipedia.org/wiki/Allele_frequency"><font color="#0066cc">allele frequencies</font></a> within a population—are genetic drift and natural selection. Genetic drift is the random sampling of a parent generation's genes, which causes some alleles to randomly change in frequency. Natural selection, on the other hand, is the nonrandom propagation of genes that favor survival and reproduction.</p>
<p> </p>
<h3><span class="mw-headline">Genetic drift</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Genetic drift" href="http://en.wikipedia.org/wiki/Genetic_drift"><font color="#0066cc">Genetic drift</font></a> and <a title="Effective population size" href="http://en.wikipedia.org/wiki/Effective_population_size"><font color="#0066cc">Effective population size</font></a>.</em> </dd></dl></div><p>Genetic drift is the change in allele frequency from one generation to the next that occurs because alleles in the offspring generation are a <a title="Sampling (statistics)" href="http://en.wikipedia.org/wiki/Sampling_%28statistics%29"><font color="#0066cc">random sample</font></a> of alleles in the parent generation, and are thus subject to <a title="Sampling error" href="http://en.wikipedia.org/wiki/Sampling_error"><font color="#0066cc">sampling error</font></a>.<sup class="reference" id="_ref-Amos_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Amos"><font color="#0066cc">[33]</font></a></sup> Over time, even in the absence of selection on the alleles, allele frequencies tend to "drift" upward or downward, until they eventually becoming "fixed" - that is, going to 0% or 100% frequency. Fluctuations in allele frequency between successive generations may thus result in some alleles disappearing from the population due to chance alone. Two separate populations that begin with the same allele frequencies might therefore drift apart by random fluctuation into two divergent populations with different sets of alleles.<sup class="reference" id="_ref-55"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-55"><font color="#0066cc">[70]</font></a></sup></p><p>The relative importance of natural selection and genetic drift in determining the fate of new mutations depends on the population size and the strength of selection.<sup class="reference" id="_ref-Whitlock_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Whitlock"><font color="#0066cc">[71]</font></a></sup> Natural selection is predominant in large populations, while genetic drift is dominant in small populations. Finally, the time for an allele to become fixed in the population by genetic drift (that is, for all individuals in the population to carry that allele) depends on population size — smaller populations require a shorter time for fixation.<sup class="reference" id="_ref-56"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-56"><font color="#0066cc">[72]</font></a></sup></p><p>As a result, changing population size can dramatically influence the course of evolution. <a title="Population bottleneck" href="http://en.wikipedia.org/wiki/Population_bottleneck"><font color="#0066cc">Population bottlenecks</font></a>, where the population shrinks in size temporarily to a small number of individuals and therefore loses much genetic variation, result in a more uniform population and the loss of most rare variation.<sup class="reference" id="_ref-Amos_2"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Amos"><font color="#0066cc">[33]</font></a></sup> Bottlenecks may also result from migration or population subdivision.<sup class="reference" id="_ref-Whitlock_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Whitlock"><font color="#0066cc">[71]</font></a></sup></p>
<p> </p>
<h3><span class="mw-headline">Natural selection</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection"><font color="#0066cc">Natural selection</font></a>.</em> </dd></dl></div>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 252px"><a class="internal" title="A peacock's tail is the canonical example of sexual selection" href="http://en.wikipedia.org/wiki/Image:Peacock.displaying.better.800pix.jpg"><img class="thumbimage" height="199" alt="A peacock's tail is the canonical example of sexual selection" width="250" longdesc="/wiki/Image:Peacock.displaying.better.800pix.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Peacock.displaying.better.800pix.jpg/250px-Peacock.displaying.better.800pix.jpg" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Peacock.displaying.better.800pix.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>A <a title="Peacock" href="http://en.wikipedia.org/wiki/Peacock"><font color="#0066cc">peacock</font></a>'s tail is the canonical example of <a title="Sexual selection" href="http://en.wikipedia.org/wiki/Sexual_selection"><font color="#0066cc">sexual selection</font></a></div>
</div>
</div>
<p><a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection"><font color="#0066cc">Natural selection</font></a>, one of the processes that drive evolution, results from the difference in reproductive success between individuals in a population.<sup class="reference" id="_ref-Darwin_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Darwin"><font color="#0066cc">[73]</font></a></sup> It has often been called a "self-evident" mechanism because it necessarily follows from the following facts:</p>
<dl><dd>
<ul>
</ul>
</dd></dl>
<p>If a trait increases the <a title="Fitness (biology)" href="http://en.wikipedia.org/wiki/Fitness_%28biology%29"><font color="#0066cc">evolutionary fitness</font></a> of the individuals that carry them, then those individuals will be more likely to survive and reproduce than other organisms in the population, thus passing more copies of this heritable trait on to the next generation. Conversely, a decrease in fitness caused by a deleterious trait results in this trait becoming rarer.<sup class="reference" id="_ref-Futuyma_2"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Futuyma"><font color="#0066cc">[1]</font></a></sup><sup class="reference" id="_ref-57"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-57"><font color="#0066cc">[74]</font></a></sup><sup class="reference" id="_ref-58"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-58"><font color="#0066cc">[75]</font></a></sup></p><p>A special case of natural selection is <a title="Sexual selection" href="http://en.wikipedia.org/wiki/Sexual_selection"><font color="#0066cc">sexual selection</font></a>: selection for any trait whose presence is directly correlated with mating success due to preferential mate choice.<sup class="reference" id="_ref-59"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-59"><font color="#0066cc">[76]</font></a></sup> Traits that evolved via <a title="Sexual selection" href="http://en.wikipedia.org/wiki/Sexual_selection"><font color="#0066cc">sexual selection</font></a> are particularly prominent among males of animal species. Despite the fact that such traits may decrease the survival of individual males (e.g. cumbersome antlers, mating calls or bright colors that attract predators, male-male fighting over access to mates),<sup class="reference" id="_ref-60"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-60"><font color="#0066cc">[77]</font></a></sup> reproductive success is usually higher in males that show robust, sexually selected phenotypes.<sup class="reference" id="_ref-61"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-61"><font color="#0066cc">[78]</font></a></sup></p><p>Natural selection of trait frequencies within a population can be subcategorized into three different modes: <a title="Directional selection" href="http://en.wikipedia.org/wiki/Directional_selection"><font color="#0066cc">directional selection</font></a> (a shift in the mean trait value over time);<sup class="reference" id="_ref-62"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-62"><font color="#0066cc">[79]</font></a></sup> <a title="Disruptive selection" href="http://en.wikipedia.org/wiki/Disruptive_selection"><font color="#0066cc">disruptive selection</font></a> (selection for extreme trait values on both ends, or "tails" of the distribution, often resulting in a <a title="Bimodal distribution" href="http://en.wikipedia.org/wiki/Bimodal_distribution"><font color="#0066cc">bimodal distribution</font></a> and selection against the mean); and <a title="Stabilizing selection" href="http://en.wikipedia.org/wiki/Stabilizing_selection"><font color="#0066cc">stabilizing selection</font></a> (also called purifying selection — selection against extreme trait values on both ends, and a decrease in <a title="Variance" href="http://en.wikipedia.org/wiki/Variance"><font color="#0066cc">variance</font></a> around the mean.)<sup class="reference" id="_ref-63"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-63"><font color="#0066cc">[80]</font></a></sup></p>
<p> </p>
<h2><span class="mw-headline">Outcomes of evolution</span></h2>
<p> </p>
<h3><span class="mw-headline">Adaptation</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Adaptation" href="http://en.wikipedia.org/wiki/Adaptation"><font color="#0066cc">Adaptation</font></a>.</em> </dd></dl></div><p>Through the process of natural selection, organisms generally become better suited to their environments.<sup class="reference" id="_ref-Darwin_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Darwin"><font color="#0066cc">[73]</font></a></sup> As a result of increased fitness, natural selection can result in <a title="Adaptation" href="http://en.wikipedia.org/wiki/Adaptation"><font color="#0066cc">adaptation</font></a> over time: the gradual accumulation of new traits that generally result in a population of organisms becoming better suited to its environment and <a title="Ecological niche" href="http://en.wikipedia.org/wiki/Ecological_niche"><font color="#0066cc">ecological niche</font></a>. <a title="Adaptation" href="http://en.wikipedia.org/wiki/Adaptation"><font color="#0066cc">Adaptation</font></a> is often thought of as any evolutionary process that increases the <a title="Fitness (biology)" href="http://en.wikipedia.org/wiki/Fitness_%28biology%29"><font color="#0066cc">fitness</font></a> of the individual — however, under such a loose definition all natural selection would be considered adaptive. More strictly speaking, an adaptation is a specifically defined trait that not only enhances performance of some specific function, but also evolved under selection to perform that function (in other words, historical function must be the same as the current utility).<sup class="reference" id="_ref-64"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-64"><font color="#0066cc">[81]</font></a></sup></p><p>It is important to note that not all characteristics of an organism are necessarily adaptations, as many traits are present in organisms simply by virtue of ancestry or developmental constraints. For example, whereas the human hand is very capable and seemingly well-adapted for operating a <a title="Computer mouse" href="http://en.wikipedia.org/wiki/Computer_mouse"><font color="#0066cc">computer mouse</font></a>, it is not an adaptation for that function since it did not evolve in a context where operating a mouse resulted in an increase of fitness. <sup class="reference" id="_ref-understandingevolution_2"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-understandingevolution"><font color="#0066cc">[4]</font></a></sup> Many traits that appear to be adaptations are in fact <a title="Exaptation" href="http://en.wikipedia.org/wiki/Exaptation"><font color="#0066cc">exaptations</font></a>—traits that originally evolved under selection for one function, but were later co-opted for something else.<sup class="reference" id="_ref-65"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-65"><font color="#0066cc">[82]</font></a></sup> For example, the forelimbs of penguins were functionally wings before they evolved to function as aquatic flippers. <sup class="reference" id="_ref-66"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-66"><font color="#0066cc">[83]</font></a></sup> Additionally, adaptation has no objective or absolute value: a trait that increases fitness in one environment may decrease it in another. For example, light pigmentation is an advantageous adaptation for <a title="Camouflage" href="http://en.wikipedia.org/wiki/Camouflage"><font color="#0066cc">camouflage</font></a> in light-colored habitats, but disadvantageous in dark-colored environments.<sup class="reference" id="_ref-67"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-67"><font color="#0066cc">[84]</font></a></sup></p>
<p> </p>
<h3><span class="mw-headline">Competition and cooperation</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Reciprocity (evolution)" href="http://en.wikipedia.org/wiki/Reciprocity_%28evolution%29"><font color="#0066cc">Reciprocity (evolution)</font></a> and <a title="Altruism in animals" href="http://en.wikipedia.org/wiki/Altruism_in_animals"><font color="#0066cc">Altruism in animals</font></a>.</em> </dd></dl></div><p>One of the most striking features of the natural world is that genes, cells, and organisms cooperate to make higher-order entities function. For example, cells in the human body do not generally grow uncontrollably as when they do, this causes cancer.<sup class="reference" id="_ref-Bertram_2"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-Bertram"><font color="#0066cc">[34]</font></a></sup> Generally, mathematical models incorporating mutation and natural selection have been used to model adaptation and evolution. Recent trends now incorporate "<a title="Game theory" href="http://en.wikipedia.org/wiki/Game_theory"><font color="#0066cc">game theory</font></a>" as more applicable to generating reliable models.<sup class="reference" id="_ref-68"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-68"><font color="#0066cc">[85]</font></a></sup><sup class="reference" id="_ref-69"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-69"><font color="#0066cc">[86]</font></a></sup> Cooperation is now seen as a fundamental property needed for evolution to construct new levels of organization. That selfish replicators could sacrifice their own reproductive potential to cooperate seems paradoxical in a competitive world, however a number of mechanisms can generate cooperation, such as kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection.<sup class="reference" id="_ref-70"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-70"><font color="#0066cc">[87]</font></a></sup> The ubiquity of cooperation in the natural world and studies from the last twenty-five years reveal cooperation as a significant principle in constructive evolution and it is now recognised as the third fundamental principle in evolution, alongside variation and selection.<sup class="reference" id="_ref-71"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-71"><font color="#0066cc">[88]</font></a></sup><sup class="reference" id="_ref-72"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-72"><font color="#0066cc">[89]</font></a></sup></p>
<p> </p>
<h3><span class="mw-headline">Speciation and extinction</span></h3>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation"><font color="#0066cc">Speciation</font></a> and <a title="Extinction" href="http://en.wikipedia.org/wiki/Extinction"><font color="#0066cc">Extinction</font></a>.</em> </dd></dl></div>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 252px"><a class="internal" title="The geographical isolation of Darwin's finches on the Galápagos Islands led to the rise of over a dozen distinct species. Their beak shapes reflect adaptations to many different food sources." href="http://en.wikipedia.org/wiki/Image:Darwin%27s_finches.jpeg"><img class="thumbimage" height="236" alt="The geographical isolation of Darwin's finches on the Galápagos Islands led to the rise of over a dozen distinct species. Their beak shapes reflect adaptations to many different food sources." width="250" longdesc="/wiki/Image:Darwin%27s_finches.jpeg" src="http://upload.wikimedia.org/wikipedia/commons/9/97/Darwin%27s_finches.jpeg" /></a><div class="thumbcaption">The <a title="Geographical isolation" href="http://en.wikipedia.org/wiki/Geographical_isolation"><font color="#0066cc">geographical isolation</font></a> of <a title="Darwin's finches" href="http://en.wikipedia.org/wiki/Darwin%27s_finches"><font color="#0066cc">Darwin's finches</font></a> on the <a title="Galápagos Islands" href="http://en.wikipedia.org/wiki/Gal%C3%A1pagos_Islands"><font color="#0066cc">Galápagos Islands</font></a> led to the rise of over a dozen distinct species. Their beak shapes reflect adaptations to many different food sources.</div>
</div>
</div>
<p><a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation"><font color="#0066cc">Speciation</font></a> is the irreversible process by which a pre-existing species lineage diverges into two descendant (or "daughter") species lineages, which then become reproductively isolated.<sup class="reference" id="_ref-73"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-73"><font color="#0066cc">[90]</font></a></sup> Speciation is always described and understood as a binary (two-part) split in genealogy. Because a pair of sister species are equally descended from the ancestral form, it is incorrect to view one daughter species as the "original" species and the other as the "new" one.</p><p>In sexually reproducing organisms, speciation results from two important events: 1.) the evolution of reproductive isolating mechanisms, resulting in 2.) genealogical divergence. The most common mode of speciation in animals is <a title="Allopatric speciation" href="http://en.wikipedia.org/wiki/Allopatric_speciation"><font color="#0066cc">allopatric speciation</font></a>, which occurs in populations that initially become isolated geographically, such as by <a title="Habitat fragmentation" href="http://en.wikipedia.org/wiki/Habitat_fragmentation"><font color="#0066cc">habitat fragmentation</font></a> or migration. Simply by virtue of being geographically separated, selection and drift will act independently in the isolated populations, and will proceed to reproductive incompatibility if the separation is maintained long enough.<sup class="reference" id="_ref-74"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-74"><font color="#0066cc">[91]</font></a></sup> <a title="Sympatric speciation" href="http://en.wikipedia.org/wiki/Sympatric_speciation"><font color="#0066cc">Sympatric speciation</font></a> is species divergence without geographic isolation, and it is typically controversial since even a small amount of <a title="Gene flow" href="http://en.wikipedia.org/wiki/Gene_flow"><font color="#0066cc">gene flow</font></a> may be sufficient to homogenize a potentially diverging species.<sup class="reference" id="_ref-75"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-75"><font color="#0066cc">[92]</font></a></sup><sup class="reference" id="_ref-76"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-76"><font color="#0066cc">[93]</font></a></sup> General models of sympatric speciation require the evolution of stable <a title="Polymorphism (biology)" href="http://en.wikipedia.org/wiki/Polymorphism_%28biology%29"><font color="#0066cc">polymorphisms</font></a> associated with non-random <a title="Assortative mating" href="http://en.wikipedia.org/wiki/Assortative_mating"><font color="#0066cc">assortative mating</font></a>, in order for reproductive isolation to evolve. An example of rapid sympatric speciation can be clearly observed in the <a title="Triangle of U" href="http://en.wikipedia.org/wiki/Triangle_of_U"><font color="#0066cc">triangle of U</font></a>, where new species of <em>Brassica sp.</em> have been made by the fusing of separate genomes from related plants, although this type of speciation may be more accurately described as speciation by <a title="Polyploidy" href="http://en.wikipedia.org/wiki/Polyploidy"><font color="#0066cc">polyploidization</font></a>.</p>
<div class="thumb tleft">
<div class="thumbinner" style="WIDTH: 227px"><a class="internal" title="An Allosaurus skeleton. All non-avian dinosaur species died in a mass extinction." href="http://en.wikipedia.org/wiki/Image:Allosaurus1.jpg"><img class="thumbimage" height="169" alt="An Allosaurus skeleton. All non-avian dinosaur species died in a mass extinction." width="225" longdesc="/wiki/Image:Allosaurus1.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Allosaurus1.jpg/225px-Allosaurus1.jpg" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Allosaurus1.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>An <em><a title="Allosaurus" href="http://en.wikipedia.org/wiki/Allosaurus"><font color="#0066cc">Allosaurus</font></a></em> skeleton. All non-avian <a title="Dinosaur" href="http://en.wikipedia.org/wiki/Dinosaur"><font color="#0066cc">dinosaur</font></a> species died in a <a title="Permian-Triassic extinction event" href="http://en.wikipedia.org/wiki/Permian-Triassic_extinction_event"><font color="#0066cc">mass extinction</font></a>.</div>
</div>
</div>
<p><a title="Ernst Mayr" href="http://en.wikipedia.org/wiki/Ernst_Mayr"><font color="#0066cc">Ernst Mayr</font></a>'s <a title="Peripatric speciation" href="http://en.wikipedia.org/wiki/Peripatric_speciation"><font color="#0066cc">peripatric speciation</font></a> is a type of speciation that exists as a result of <a title="Character displacement" href="http://en.wikipedia.org/wiki/Character_displacement"><font color="#0066cc">character displacement</font></a> on hybrid-zone boundaries between two adjoining populations. Peripatric speciation is a critical underpinning of the theory of <a title="Punctuated equilibrium" href="http://en.wikipedia.org/wiki/Punctuated_equilibrium"><font color="#0066cc">punctuated equilibrium</font></a>.</p><p>One common misconception about evolution is the idea that if humans evolved from monkeys, monkeys should no longer exist. However, biologists have never claimed that humans evolved from monkeys — only that humans and monkeys, like all organisms, share a common ancestor (that was neither human nor monkey).<sup class="reference" id="_ref-77"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-77"><font color="#0066cc">[94]</font></a></sup>Common misconceptions like this indicate a misunderstanding of speciation, which involves two subsets of a population <a title="Cladogenesis" href="http://en.wikipedia.org/wiki/Cladogenesis"><font color="#0066cc">cladogenetically</font></a> splitting apart, rather than an entire species simply turning into a new one.</p><p><a title="Extinction" href="http://en.wikipedia.org/wiki/Extinction"><font color="#0066cc">Extinction</font></a> is the disappearance of species (i.e., <a title="Gene pool" href="http://en.wikipedia.org/wiki/Gene_pool"><font color="#0066cc">gene pools</font></a>). The moment of extinction is generally defined as occurring at the death of the last individual of that species. Extinction is not an unusual event on a <a title="Geological time scale" href="http://en.wikipedia.org/wiki/Geological_time_scale"><font color="#0066cc">geological time scale</font></a> — species regularly appear through speciation, and disappear through extinction. The <a title="Permian-Triassic extinction event" href="http://en.wikipedia.org/wiki/Permian-Triassic_extinction_event"><font color="#0066cc">Permian-Triassic extinction event</font></a> was the Earth's most severe <a title="Extinction event" href="http://en.wikipedia.org/wiki/Extinction_event"><font color="#0066cc">extinction event</font></a>, rendering extinct 90% of all marine species and 70% of all terrestrial vertebrate species. In the <a title="Cretaceous-Tertiary extinction event" href="http://en.wikipedia.org/wiki/Cretaceous-Tertiary_extinction_event"><font color="#0066cc">Cretaceous-Tertiary extinction event</font></a>, many forms of life perished (including approximately 50% of all <a title="Genus" href="http://en.wikipedia.org/wiki/Genus"><font color="#0066cc">genera</font></a>), the most commonly mentioned among them being the non-avian <a title="Dinosaur" href="http://en.wikipedia.org/wiki/Dinosaur"><font color="#0066cc">dinosaurs</font></a>. The <a title="Holocene extinction event" href="http://en.wikipedia.org/wiki/Holocene_extinction_event"><font color="#0066cc">Holocene extinction event</font></a> is a current mass extinction, involving the rapid extinction of tens or hundreds of thousands of species each year. Scientists consider human activities to be the primary cause of the ongoing extinction event, as well as the related influence of <a title="Climate change" href="http://en.wikipedia.org/wiki/Climate_change"><font color="#0066cc">climate change</font></a>.<sup class="reference" id="_ref-78"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-78"><font color="#0066cc">[95]</font></a></sup></p>
<p> </p>
<h2><span class="mw-headline">Evidence of evolution</span></h2>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Evidence of evolution" href="http://en.wikipedia.org/wiki/Evidence_of_evolution"><font color="#0066cc">Evidence of evolution</font></a> and <a title="Common descent" href="http://en.wikipedia.org/wiki/Common_descent"><font color="#0066cc">Common descent</font></a>.</em> </dd></dl></div>
<p> </p>
<h3><span class="mw-headline">Common descent</span></h3>
<p>The theory of universal <a title="Common descent" href="http://en.wikipedia.org/wiki/Common_descent"><font color="#0066cc">common descent</font></a> proposes that all <a title="Organisms" href="http://en.wikipedia.org/wiki/Organisms"><font color="#0066cc">organisms</font></a> on <a title="Earth" href="http://en.wikipedia.org/wiki/Earth"><font color="#0066cc">Earth</font></a> are descended from a common ancestor or ancestral <a title="Gene pool" href="http://en.wikipedia.org/wiki/Gene_pool"><font color="#0066cc">gene pool</font></a>. Evidence for common descent is inferred from traits shared between all living organisms. Today, there is strong evidence from genetics that all organisms have a common ancestor. For example, every living cell makes use of <a title="Nucleic acid" href="http://en.wikipedia.org/wiki/Nucleic_acid"><font color="#0066cc">nucleic acids</font></a> as its genetic material, and uses the same 20 <a title="Amino acid" href="http://en.wikipedia.org/wiki/Amino_acid"><font color="#0066cc">amino acids</font></a> as the building blocks for <a title="Protein" href="http://en.wikipedia.org/wiki/Protein"><font color="#0066cc">proteins</font></a>. The universality of these traits strongly suggests common ancestry, because the selection of many of these traits seems arbitrary. <sup class="reference" id="_ref-79"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-79"><font color="#0066cc">[96]</font></a></sup></p>
<div class="thumb tleft">
<div class="thumbinner" style="WIDTH: 302px"><a class="internal" title="Morphologic similarities in the Hominidae family are evidence of common descent." href="http://en.wikipedia.org/wiki/Image:Huxley_-_Mans_Place_in_Nature.jpg"><font color="#0066cc"><img class="thumbimage" height="180" alt="Morphologic similarities in the Hominidae family are evidence of common descent." width="300" longdesc="/wiki/Image:Huxley_-_Mans_Place_in_Nature.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Huxley_-_Mans_Place_in_Nature.jpg/300px-Huxley_-_Mans_Place_in_Nature.jpg" /></font></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Huxley_-_Mans_Place_in_Nature.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>Morphologic similarities in the <a title="Hominidae" href="http://en.wikipedia.org/wiki/Hominidae"><font color="#0066cc">Hominidae</font></a> family are evidence of common descent.</div>
</div>
</div>
<p>In the <a title="Origin of Species" href="http://en.wikipedia.org/wiki/Origin_of_Species"><font color="#0066cc">Origin of Species</font></a>, Darwin built his case for the truth of shared ancestry of all organisms by pointing out a number of facts that were not new to science: 1.) organisms have geographic distributions that cannot be explained by local ecology or adaptation alone. 2.) The diversity of life is not a diversity of completely unique organisms, but a diversity of organisms that share traits and similarities with one another (see <a title="Homology" href="http://en.wikipedia.org/wiki/Homology"><font color="#0066cc">homology</font></a>). 3.) Many organisms have vestigial traits or even behaviors that have no clear purpose in their modern bearers. 4.) All of life, as <a title="Linneaus" href="http://en.wikipedia.org/wiki/Linneaus"><font color="#0066cc">Linneaus</font></a> and others have always recognized, can be naturally classified into a hierarchy of nested groups. This last point in particular is strongly consistent with a shared evolutionary history of all organisms that live today and ever lived.</p><p>Evolution has also left numerous signs of the histories of different species. <a title="Fossil" href="http://en.wikipedia.org/wiki/Fossil"><font color="#0066cc">Fossils</font></a>, along with the <a title="Comparative anatomy" href="http://en.wikipedia.org/wiki/Comparative_anatomy"><font color="#0066cc">comparative anatomy</font></a> of present-day organisms, constitute the morphological, or <a title="Anatomy" href="http://en.wikipedia.org/wiki/Anatomy"><font color="#0066cc">anatomical</font></a>, record. By comparing the anatomies of both modern and extinct species, paleontologists can infer the lineages of those species.</p><p>The development of <a title="Molecular genetics" href="http://en.wikipedia.org/wiki/Molecular_genetics"><font color="#0066cc">molecular genetics</font></a>, and particularly of DNA sequencing, has allowed biologists to study the record of evolution left in organisms' genetic structures. The degrees of similarity and difference in the DNA sequences of modern species allows geneticists to reconstruct their lineages. It is from DNA sequence comparisons that figures such as the 96% genotypic similarity between humans and chimpanzees are obtained.<sup class="reference" id="_ref-80"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-80"><font color="#0066cc">[97]</font></a></sup><sup class="reference" id="_ref-81"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-81"><font color="#0066cc">[98]</font></a></sup></p>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 302px"><a class="internal" title="Tiktaalik in context: one of many species that track the evolutionary development of fish fins into tetrapod limbs" href="http://en.wikipedia.org/wiki/Image:Fishapods.jpg"><font color="#0066cc"><img class="thumbimage" height="153" alt="Tiktaalik in context: one of many species that track the evolutionary development of fish fins into tetrapod limbs" width="300" longdesc="/wiki/Image:Fishapods.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/d/db/Fishapods.jpg/300px-Fishapods.jpg" /></font></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Fishapods.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div><em><a title="Tiktaalik" href="http://en.wikipedia.org/wiki/Tiktaalik"><font color="#0066cc">Tiktaalik</font></a></em> in context: one of many species that track the evolutionary development of fish fins into tetrapod limbs</div>
</div>
</div>
<p>Other evidence used to demonstrate evolutionary lineages includes the geographical distribution of species. For instance, <a title="Marsupial" href="http://en.wikipedia.org/wiki/Marsupial"><font color="#0066cc">marsupials</font></a> are found only in Australia and South America, showing that their common ancestor with placental mammals lived before the breakup of <a title="Gondwana" href="http://en.wikipedia.org/wiki/Gondwana"><font color="#0066cc">Gondwana</font></a> and the freezing over of <a title="Antarctica" href="http://en.wikipedia.org/wiki/Antarctica"><font color="#0066cc">Antarctica</font></a>.</p><p>Scientists correlate all of the above evidence, drawn from <a title="Paleontology" href="http://en.wikipedia.org/wiki/Paleontology"><font color="#0066cc">paleontology</font></a>, anatomy, genetics, and geography, with other information about the <a title="History of Earth" href="http://en.wikipedia.org/wiki/History_of_Earth"><font color="#0066cc">history of Earth</font></a>. For instance, <a title="Paleoclimatology" href="http://en.wikipedia.org/wiki/Paleoclimatology"><font color="#0066cc">paleoclimatology</font></a> attests to periodic <a title="Ice age" href="http://en.wikipedia.org/wiki/Ice_age"><font color="#0066cc">ice ages</font></a> during which the world's climate was much cooler, and these are often found to match up with the spread of species which are better-equipped to deal with the cold, such as the <a title="Woolly mammoth" href="http://en.wikipedia.org/wiki/Woolly_mammoth"><font color="#0066cc">woolly mammoth</font></a>.</p>
<p> </p>
<h3><span class="mw-headline">Morphological homology</span></h3>
<p><a title="Fossil" href="http://en.wikipedia.org/wiki/Fossil"><font color="#0066cc">Fossils</font></a> are critical evidence for estimating when various lineages originated. Since fossilization of an organism is an uncommon occurrence, usually requiring hard parts (like teeth, bone, or pollen), the fossil record provides only sparse and intermittent information about ancestral lineages.<sup class="reference" id="_ref-82"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-82"><font color="#0066cc">[99]</font></a></sup></p><p>The fossil record provides several types of data important to the study of evolution. First, the fossil record contains the earliest known examples of life itself, as well as the earliest occurrences of individual <a title="Lineage (evolution)" href="http://en.wikipedia.org/wiki/Lineage_%28evolution%29"><font color="#0066cc">lineages</font></a>. For example, the first complex animals date from the <a title="Early Cambrian" href="http://en.wikipedia.org/wiki/Early_Cambrian"><font color="#0066cc">early Cambrian</font></a> period, approximately 520 million years ago. Second, the records of individual species yield information regarding the patterns and rates of evolution, showing whether, for example, speciation occurs gradually and incrementally, or in relatively brief intervals of geologic time. Thirdly, the fossil record is a document of large-scale patterns and events in the history of life. For example, <a title="Extinction event" href="http://en.wikipedia.org/wiki/Extinction_event"><font color="#0066cc">mass extinctions</font></a> frequently resulted in the loss of entire groups of species, while leaving others relatively unscathed. Recently, molecular biologists have used the time since divergence of related lineages to calibrate the rate at which mutations accumulate, and at which the <a title="Genomes" href="http://en.wikipedia.org/wiki/Genomes"><font color="#0066cc">genomes</font></a> of different lineages evolve.</p>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 352px"><a class="internal" title="Letter c in the picture indicates the undeveloped hind legs of a baleen whale, vestigial remnants of its terrestrial ancestors" href="http://en.wikipedia.org/wiki/Image:Skelett_vom_Wal_MK1888_ohne_Text.gif"><img class="thumbimage" height="107" alt="Letter c in the picture indicates the undeveloped hind legs of a baleen whale, vestigial remnants of its terrestrial ancestors" width="350" longdesc="/wiki/Image:Skelett_vom_Wal_MK1888_ohne_Text.gif" src="http://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Skelett_vom_Wal_MK1888_ohne_Text.gif/350px-Skelett_vom_Wal_MK1888_ohne_Text.gif" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Skelett_vom_Wal_MK1888_ohne_Text.gif"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>Letter <em>c</em> in the picture indicates the undeveloped hind legs of a <a title="Baleen whale" href="http://en.wikipedia.org/wiki/Baleen_whale"><font color="#0066cc">baleen whale</font></a>, <a title="Vestigial structure" href="http://en.wikipedia.org/wiki/Vestigial_structure"><font color="#0066cc">vestigial</font></a> remnants of its terrestrial ancestors</div>
</div>
</div>
<p><a title="Phylogenetics" href="http://en.wikipedia.org/wiki/Phylogenetics"><font color="#0066cc">Phylogenetics</font></a>, the study of the ancestry of species, has revealed that structures with similar internal organization may perform divergent functions. <a title="Vertebrate" href="http://en.wikipedia.org/wiki/Vertebrate"><font color="#0066cc">Vertebrate</font></a> limbs are a common example of such <a title="Homology (biology)" href="http://en.wikipedia.org/wiki/Homology_%28biology%29"><font color="#0066cc">homologous</font></a> structures. The bones within bat wings, for example, are very structurally similar to human hands due to common descent of these structures from an ancestor that also had 5 digits at the end of each forelimb. Other idiosyncratic anatomical features such as the panda's "<a title="Sesamoid bone" href="http://en.wikipedia.org/wiki/Sesamoid_bone"><font color="#0066cc">thumb</font></a>" indicate how an organism's evolutionary lineage constrains its adaptive development. Vestigial structures include the degenerate eyes of blind cave-dwelling fish, and the presence of hip bones in whales and snakes. Such structures may exist with little or no function in a more current organism, yet have a clear function in an ancestral species. Examples of vestigial structures in humans include <a title="Wisdom teeth" href="http://en.wikipedia.org/wiki/Wisdom_teeth"><font color="#0066cc">wisdom teeth</font></a>, the <a title="Coccyx" href="http://en.wikipedia.org/wiki/Coccyx"><font color="#0066cc">coccyx</font></a> and the <a title="Vermiform appendix" href="http://en.wikipedia.org/wiki/Vermiform_appendix"><font color="#0066cc">vermiform appendix</font></a>.</p><p>These anatomical similarities in extant and fossil organisms can give evidence of the relationships between different groups of organisms. Important fossil evidence includes the connection of distinct classes of organisms by so-called "<a title="Transitional fossil" href="http://en.wikipedia.org/wiki/Transitional_fossil"><font color="#0066cc">transitional</font></a>" species, such as the <em><a title="Archaeopteryx" href="http://en.wikipedia.org/wiki/Archaeopteryx"><font color="#0066cc">Archaeopteryx</font></a></em>, which provided early evidence for intermediate species between <a title="Dinosaur" href="http://en.wikipedia.org/wiki/Dinosaur"><font color="#0066cc">dinosaurs</font></a> and <a title="Bird" href="http://en.wikipedia.org/wiki/Bird"><font color="#0066cc">birds</font></a>,<sup class="reference" id="_ref-83"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-83"><font color="#0066cc">[100]</font></a></sup> and the recently-discovered <em><a title="Tiktaalik" href="http://en.wikipedia.org/wiki/Tiktaalik"><font color="#0066cc">Tiktaalik</font></a></em>, which clarifies the development from <a title="Fish" href="http://en.wikipedia.org/wiki/Fish"><font color="#0066cc">fish</font></a> to <a title="Tetrapod" href="http://en.wikipedia.org/wiki/Tetrapod"><font color="#0066cc">animals with four limbs</font></a>.<sup class="reference" id="_ref-84"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-84"><font color="#0066cc">[101]</font></a></sup></p>
<p> </p>
<h3><span class="mw-headline">Molecular homology</span></h3>
<p>By comparing the genetic and/or protein sequences of species, we can discern their evolutionary relationships. The resultant <a title="Phylogenetic tree" href="http://en.wikipedia.org/wiki/Phylogenetic_tree"><font color="#0066cc">phylogenetic trees</font></a> are typically congruent with traditional taxonomy, and are often used to either strengthen or correct taxonomic classifications. Sequence comparison is considered a measure robust enough to be used to correct erroneous assumptions in the phylogenetic tree in instances where other evidence is scarce. For example, neutral human DNA sequences are approximately 1.2% divergent (based on substitutions) from those of their nearest genetic relative, the <a titlefont color="Chimpanzee#0066cc" href="http:>chimpanzee<//enfont>, 1.wikipedia.org/wiki/Chimpanzee">6% from <font color="#0066cc">chimpanzeegorillas</font></a>, 1and 6.6% from <a titlefont color="Gorilla" href="http://en.wikipedia.org/wiki/Gorilla"><font color="#0066cc">gorillas</font></a>, and 6.6% from <a title="Baboon" href="http://en.wikipedia.org/wiki/Baboon"><font color="##0066cc">baboons</font></a>.<sup class="reference" id="_ref-85"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-85"><font color="#0066cc">[102]</font></a></sup><sup class="reference" id="_ref-86"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-86"><font color="#0066cc">[103]</font></a></sup> Genetic sequence evidence thus allows inference and quantification of genetic relatedness between humans and other apes.<sup class="reference" id="_ref-c_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-c"><font color="#0066cc">[104]</font></a></sup><sup class="reference" id="_ref-87"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-87"><font color="#0066cc">[105]</font></a></sup><sup class="reference" id="_ref-88"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-88"><font color="#0066cc">[106]</font></a></sup> The sequence of the 16S <a title="RRNA" href="http://en.wikipedia.org/wiki/RRNA"><font color="#0066cc">rRNA</font></a> gene, a vital gene encoding a part of the <a title="Ribosome" href="http://en.wikipedia.org/wiki/Ribosome"><font color="#0066cc">ribosome</font></a>, was used to find the broad phylogenetic relationships between all extant life. This analysis, originally done by <a title="Carl Woese" href="http://en.wikipedia.org/wiki/Carl_Woese"><font color="#0066cc">Carl Woese</font></a>, resulted in the <a title="Three-domain system" href="http://en.wikipedia.org/wiki/Three-domain_system"><font color="#0066cc">three-domain system</font></a>, arguing for two major splits in the early evolution of life. The first split led to modern <a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria"><font color="#0066cc">bacteria</font></a>, and the subsequent split led to modern <a title="Archaea" href="http://en.wikipedia.org/wiki/Archaea"><font color="#0066cc">archaea</font></a> and <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote"><font color="#0066cc">eukaryotes</font></a>.</p><p>Since <a title="Metabolism" href="http://en.wikipedia.org/wiki/Metabolism"><font color="#0066cc">metabolic</font></a> processes do not leave fossils, research into the evolution of the basic cellular processes is done largely by comparison of existing organisms. Many lineages diverged when new metabolic processes appeared, and it is theoretically possible to determine when certain metabolic processes appeared by comparing the traits of the descendants of a common ancestor or by detecting their physical manifestations. For example, the appearance of oxygen in the earth's atmosphere is linked to the evolution of <a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis"><font color="#0066cc">photosynthesis</font></a>.</p><p>The <a title="Proteome" href="http://en.wikipedia.org/wiki/Proteome"><font color="#0066cc">proteomic</font></a> evidence also supports the universal ancestry of life. Vital <a title="Protein" href="http://en.wikipedia.org/wiki/Protein"><font color="#0066cc">proteins</font></a>, such as the <a title="Ribosome" href="http://en.wikipedia.org/wiki/Ribosome"><font color="#0066cc">ribosome</font></a>, <a title="DNA polymerase" href="http://en.wikipedia.org/wiki/DNA_polymerase"><font color="#0066cc">DNA polymerase</font></a>, and <a title="RNA polymerase" href="http://en.wikipedia.org/wiki/RNA_polymerase"><font color="#0066cc">RNA polymerase</font></a>, are found in everything from the most primitive bacteria to the most complex mammals. The core part of the protein is conserved across all lineages of life, serving similar functions. Higher organisms have evolved additional <a title="Protein subunit" href="http://en.wikipedia.org/wiki/Protein_subunit"><font color="#0066cc">protein subunits</font></a>, largely affecting the regulation and <a title="Protein-protein interaction" href="http://en.wikipedia.org/wiki/Protein-protein_interaction"><font color="#0066cc">protein-protein interaction</font></a> of the core. Other overarching similarities between all lineages of extant organisms, such as <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a>, <a title="RNA" href="http://en.wikipedia.org/wiki/RNA"><font color="#0066cc">RNA</font></a>, <a title="Amino acid" href="http://en.wikipedia.org/wiki/Amino_acid"><font color="#0066cc">amino acids</font></a>, and the <a title="Lipid bilayer" href="http://en.wikipedia.org/wiki/Lipid_bilayer"><font color="#0066cc">lipid bilayer</font></a>, give support to the theory of common descent. The <a title="Chirality (chemistry)" href="http://en.wikipedia.org/wiki/Chirality_%28chemistry%29"><font color="#0066cc">chirality</font></a> of DNA, RNA, and amino acids is conserved across all known life. As there is no functional advantage to right- or left-handed molecular chirality, the simplest hypothesis is that the choice was made randomly by early organisms and passed on to all extant life through <a title="Common descent" href="http://en.wikipedia.org/wiki/Common_descent"><font color="#0066cc">common descent</font></a>. Further evidence for reconstructing ancestral lineages comes from <a title="Junk DNA" href="http://en.wikipedia.org/wiki/Junk_DNA"><font color="#0066cc">junk DNA</font></a> such as <a title="Pseudogene" href="http://en.wikipedia.org/wiki/Pseudogene"><font color="#0066cc">pseudogenes</font></a>, "dead" genes which steadily accumulate mutations.<sup class="reference" id="_ref-89"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-89"><font color="#0066cc">[107]</font></a></sup></p><p>There is also a large body of molecular evidence for a number of different mechanisms for large evolutionary changes, among them: genome and <a title="Gene duplication" href="http://en.wikipedia.org/wiki/Gene_duplication"><font color="#0066cc">gene duplication</font></a>, which facilitates rapid evolution by providing substantial quantities of genetic material under weak or no selective constraints; <a title="Horizontal gene transfer" href="http://en.wikipedia.org/wiki/Horizontal_gene_transfer"><font color="#0066cc">horizontal gene transfer</font></a>, the process of transferring genetic material to another cell that is not an organism's offspring, allowing for species to acquire beneficial genes from each other; <a title="Genetic recombination" href="http://en.wikipedia.org/wiki/Genetic_recombination"><font color="#0066cc">recombination</font></a>, capable of reassorting large numbers of different alleles and of establishing <a title="Reproductive isolation" href="http://en.wikipedia.org/wiki/Reproductive_isolation"><font color="#0066cc">reproductive isolation</font></a>; and <a title="Endosymbiotic theory" href="http://en.wikipedia.org/wiki/Endosymbiotic_theory"><font color="#0066cc">endosymbiosis</font></a>, the incorporation of genetic material and biochemical composition of a separate species, a process observed in organisms such as the protist <a title="Hatena" href="http://en.wikipedia.org/wiki/Hatena"><font color="#0066cc">hatena</font></a> and used to explain the origin of <a title="Organelle" href="http://en.wikipedia.org/wiki/Organelle"><font color="#0066cc">organelles</font></a> such as <a title="Mitochondria" href="http://en.wikipedia.org/wiki/Mitochondria"><font color="#0066cc">mitochondria</font></a> and <a title="Plastid" href="http://en.wikipedia.org/wiki/Plastid"><font color="#0066cc">plastids</font></a> as the absorption of ancient <a title="Prokaryote" href="http://en.wikipedia.org/wiki/Prokaryote"><font color="#0066cc">prokaryotic</font></a> cells into ancient eukaryotic ones.<sup class="reference" id="_ref-90"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-90"><font color="#0066cc">[108]</font></a></sup><sup class="reference" id="_ref-91"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-91"><font color="#0066cc">[109]</font></a></sup></p>
<p> </p>
<h2><span class="mw-headline">Evolutionary history of life</span></h2>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 352px"><a class="internal" title="A phylogenetic tree of all extant organisms, based on 16S rRNA gene sequence data, showing the evolutionary history of the three domains of life, bacteria, archaea and eukaryotes. Originally proposed by Carl Woese" href="http://en.wikipedia.org/wiki/Image:Phylogenetic_tree.svg"><img class="thumbimage" height="236" alt="A phylogenetic tree of all extant organisms, based on 16S rRNA gene sequence data, showing the evolutionary history of the three domains of life, bacteria, archaea and eukaryotes. Originally proposed by Carl Woese" width="350" longdesc="/wiki/Image:Phylogenetic_tree.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Phylogenetic_tree.svg/350px-Phylogenetic_tree.svg.png" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Phylogenetic_tree.svg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>A <a title="Phylogenetic tree" href="http://en.wikipedia.org/wiki/Phylogenetic_tree"><font color="#0066cc">phylogenetic tree</font></a> of all extant organisms, based on 16S <a title="Non-coding RNA" href="http://en.wikipedia.org/wiki/Non-coding_RNA"><font color="#0066cc">rRNA</font></a> <a title="Gene" href="http://en.wikipedia.org/wiki/Gene"><font color="#0066cc">gene</font></a> sequence data, showing the evolutionary history of the <a title="Three-domain system" href="http://en.wikipedia.org/wiki/Three-domain_system"><font color="#0066cc">three domains of life</font></a>, <a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria"><font color="#0066cc">bacteria</font></a>, <a title="Archaea" href="http://en.wikipedia.org/wiki/Archaea"><font color="#0066cc">archaea</font></a> and <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote"><font color="#0066cc">eukaryotes</font></a>. Originally proposed by <a title="Carl Woese" href="http://en.wikipedia.org/wiki/Carl_Woese"><font color="#0066cc">Carl Woese</font></a></div>
</div>
</div>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Timeline of evolution" href="http://en.wikipedia.org/wiki/Timeline_of_evolution"><font color="#0066cc">Timeline of evolution</font></a>.</em> </dd></dl></div><p>Life must exist before it starts diversifying, and so the <a title="Origin of life" href="http://en.wikipedia.org/wiki/Origin_of_life"><font color="#0066cc">origin of life</font></a> is a necessary precursor for biological evolution.<sup class="reference" id="_ref-HowStuffWorks_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-HowStuffWorks"><font color="#0066cc">[110]</font></a></sup> How life came to exist is not relevant to evolution,<sup class="reference" id="_ref-92"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-92"><font color="#0066cc">[111]</font></a></sup> and indeed <a title="Charles Darwin" href="http://en.wikipedia.org/wiki/Charles_Darwin"><font color="#0066cc">Darwin</font></a> wrote of "life, with its several powers, having been originally breathed by the Creator into a few forms or into one",<sup class="reference" id="_ref-93"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-93"><font color="#0066cc">[112]</font></a></sup> but the question of pre-evolutionary <a title="Abiogenesis" href="http://en.wikipedia.org/wiki/Abiogenesis"><font color="#0066cc">abiogenesis</font></a> is a subject of scientific study<sup class="reference" id="_ref-94"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-94"><font color="#0066cc">[113]</font></a></sup> which is often discussed under the general heading of <em>evolution</em>.<sup class="reference" id="_ref-HowStuffWorks_1"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-HowStuffWorks"><font color="#0066cc">[110]</font></a></sup> The current <a title="Scientific consensus" href="http://en.wikipedia.org/wiki/Scientific_consensus"><font color="#0066cc">scientific consensus</font></a> is that life began from <a title="Catalysis" href="http://en.wikipedia.org/wiki/Catalysis"><font color="#0066cc">self-catalytic</font></a> chemical reactions, but disputes over what defines <a title="Life" href="http://en.wikipedia.org/wiki/Life"><font color="#0066cc">life</font></a> make the point at which such increasingly complex sets of reactions became true organisms unclear. Not much is yet known about the earliest developments in life. There is no scientific consensus regarding the relationship of the three domains of organisms (<a title="Archaea" href="http://en.wikipedia.org/wiki/Archaea"><font color="#0066cc">Archaea</font></a>, <a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria"><font color="#0066cc">Bacteria</font></a>, and <a title="Eukaryota" href="http://en.wikipedia.org/wiki/Eukaryota"><font color="#0066cc">Eukaryota</font></a>) or regarding the precise reactions involved in abiogenesis. Attempts to shed light on the origin of life generally focus on the behavior of <a title="Macromolecule" href="http://en.wikipedia.org/wiki/Macromolecule"><font color="#0066cc">macromolecules</font></a>—particularly <a title="RNA" href="http://en.wikipedia.org/wiki/RNA"><font color="#0066cc">RNA</font></a>—and the behavior of <a title="Complex system" href="http://en.wikipedia.org/wiki/Complex_system"><font color="#0066cc">complex systems</font></a>.</p><p>Fossil evidence indicates that the diversity and complexity of modern life has developed over much of the <a title="Age of the Earth" href="http://en.wikipedia.org/wiki/Age_of_the_Earth"><font color="#0066cc">4.57 billion year</font></a> <a title="History of Earth" href="http://en.wikipedia.org/wiki/History_of_Earth"><font color="#0066cc">history of Earth</font></a>. Oxygenic <a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis"><font color="#0066cc">photosynthesis</font></a> emerged around 3 billion years ago, and the subsequent emergence of an oxygen-rich atmosphere made the development of <a title="Aerobic respiration" href="http://en.wikipedia.org/wiki/Aerobic_respiration"><font color="#0066cc">aerobic</font></a> <a title="Cellular respiration" href="http://en.wikipedia.org/wiki/Cellular_respiration"><font color="#0066cc">cellular respiration</font></a> possible around 2 billion years ago. In the last billion years, simple multicellular plants and animals began to appear in the oceans. Soon after the emergence of the first animals, the <a title="Cambrian explosion" href="http://en.wikipedia.org/wiki/Cambrian_explosion"><font color="#0066cc">Cambrian explosion</font></a>, a geologically brief period of remarkable biological diversity, originated all the major body plans, or <a title="Phylum (biology)" href="http://en.wikipedia.org/wiki/Phylum_%28biology%29"><font color="#0066cc">phyla</font></a>, of modern animals. This event may have been triggered by the development of the <a title="Homeobox" href="http://en.wikipedia.org/wiki/Homeobox"><font color="#0066cc">Hox genes</font></a>.<sup class="reference" id="_ref-95"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-95"><font color="#0066cc">[114]</font></a></sup></p><p>About 500 million years ago (<a title="Mya (unit)" href="http://en.wikipedia.org/wiki/Mya_%28unit%29"><font color="#0066cc">mya</font></a>), <a title="Plant" href="http://en.wikipedia.org/wiki/Plant"><font color="#0066cc">plants</font></a> and <a title="Fungus" href="http://en.wikipedia.org/wiki/Fungus"><font color="#0066cc">fungi</font></a> colonized the land, and were soon followed by <a title="Arthropod" href="http://en.wikipedia.org/wiki/Arthropod"><font color="#0066cc">arthropods</font></a> and other animals. <a title="Amphibian" href="http://en.wikipedia.org/wiki/Amphibian"><font color="#0066cc">Amphibians</font></a> first appeared around 300 mya, followed by <a title="Reptile" href="http://en.wikipedia.org/wiki/Reptile"><font color="#0066cc">reptiles</font></a>, then <a title="Mammal" href="http://en.wikipedia.org/wiki/Mammal"><font color="#0066cc">mammals</font></a> around 200 mya and <a title="Bird" href="http://en.wikipedia.org/wiki/Bird"><font color="#0066cc">birds</font></a> around 100 mya. The <a title="Homo (genus)" href="http://en.wikipedia.org/wiki/Homo_%28genus%29"><font color="#0066cc">human genus</font></a> arose around 2 mya, while the earliest modern humans lived 200 thousand years ago.</p>
<p> </p>
<h2><span class="mw-headline">Social and religious controversies</span></h2>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 162px"><a class="internal" title="This caricature of Charles Darwin as an ape reflects the cultural backlash against evolution and common descent." href="http://en.wikipedia.org/wiki/Image:Darwin_ape.jpg"><img class="thumbimage" height="203" alt="This caricature of Charles Darwin as an ape reflects the cultural backlash against evolution and common descent." width="160" longdesc="/wiki/Image:Darwin_ape.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Darwin_ape.jpg/160px-Darwin_ape.jpg" /></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Darwin_ape.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>This caricature of <a title="Charles Darwin" href="http://en.wikipedia.org/wiki/Charles_Darwin"><font color="#0066cc">Charles Darwin</font></a> as an <a title="Ape" href="http://en.wikipedia.org/wiki/Ape"><font color="#0066cc">ape</font></a> reflects the cultural backlash against evolution and <a title="Common descent" href="http://en.wikipedia.org/wiki/Common_descent"><font color="#0066cc">common descent</font></a>.</div>
</div>
</div>
<div class="boilerplate seealso"><dl><dd><em>For more details on this topic, see <a title="Social effect of evolutionary theory" href="http://en.wikipedia.org/wiki/Social_effect_of_evolutionary_theory"><font color="#0066cc">Social effect of evolutionary theory</font></a>, <a titlefont color="#0066cc">Creation-evolution controversy" href="http:<//en.wikipedia.org/wiki/Creation-evolution_controversy"font>, and <font color="#0066cc">Creation-Objections to evolution controversy</font></a>, and <a title="Objections to evolution" href="http://en.wikipedia.org/wiki/Objections_to_evolution"><font color="#0066cc">Objections to evolution</font></a>.</em> </dd></dl></div><p>Ever since the publication of <em><a title="The Origin of Species" href="http://en.wikipedia.org/wiki/The_Origin_of_Species"><font color="#0066cc">The Origin of Species</font></a></em> in 1859, evolution has been a source of controversy. In general, controversy has centered on the philosophical, social, and religious implications of evolution, not on the science of evolution itself; the proposition that biological evolution occurs through the mechanism of natural selection is completely uncontested within the <a title="Scientific community" href="http://en.wikipedia.org/wiki/Scientific_community"><font color="#0066cc">scientific community</font></a>.<sup class="reference" id="_ref-96"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-96"><font color="#0066cc">[115]</font></a></sup><sup class="reference" id="_ref-97"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-97"><font color="#0066cc">[116]</font></a></sup></p><p>As Darwin recognized early on, perhaps the most controversial aspect of evolutionary thought is <a title="Human evolution" href="http://en.wikipedia.org/wiki/Human_evolution"><font color="#0066cc">its applicability to human beings</font></a>. Specifically, many object to the idea that all diversity in life, including human beings, arose through <a title="Natural science" href="http://en.wikipedia.org/wiki/Natural_science"><font color="#0066cc">natural</font></a> processes without a need for supernatural intervention. Although many religions, such as <a title="Evolution and the Roman Catholic Church" href="http://en.wikipedia.org/wiki/Evolution_and_the_Roman_Catholic_Church"><font color="#0066cc">Catholicism</font></a>, have reconciled their beliefs with evolution through <a title="Theistic evolution" href="http://en.wikipedia.org/wiki/Theistic_evolution"><font color="#0066cc">theistic evolution</font></a>, <a title="Creationism" href="http://en.wikipedia.org/wiki/Creationism"><font color="#0066cc">creationists</font></a> <a title="Objections to evolution" href="http://en.wikipedia.org/wiki/Objections_to_evolution"><font color="#0066cc">object to evolution</font></a> on the basis that it contradicts their theistic <a title="Origin belief" href="http://en.wikipedia.org/wiki/Origin_belief"><font color="#0066cc">origin beliefs</font></a>.<sup class="reference" id="_ref-98"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-98"><font color="#0066cc">[117]</font></a></sup> In some countries — notably the <a title="United States" href="http://en.wikipedia.org/wiki/United_States"><font color="#0066cc">United States</font></a> — these tensions between scientific and religious teachings have fueled the ongoing <a title="Creation-evolution controversy" href="http://en.wikipedia.org/wiki/Creation-evolution_controversy"><font color="#0066cc">creation-evolution controversy</font></a>, a social and religious conflict especially centering on <a title="Politics of creationism" href="http://en.wikipedia.org/wiki/Politics_of_creationism"><font color="#0066cc">politics</font></a> and <a title="Creation and evolution in public education" href="http://en.wikipedia.org/wiki/Creation_and_evolution_in_public_education"><font color="#0066cc">public education</font></a>. While other fields of science, such as <a title="Physical cosmology" href="http://en.wikipedia.org/wiki/Physical_cosmology"><font color="#0066cc">cosmology</font></a><sup class="reference" id="_ref-wmap_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-wmap"><font color="#0066cc">[118]</font></a></sup> and <a title="Earth science" href="http://en.wikipedia.org/wiki/Earth_science"><font color="#0066cc">earth science</font></a>,<sup class="reference" id="_ref-zircon_0"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-zircon"><font color="#0066cc">[119]</font></a></sup> also conflict with literal interpretations of many religious texts, evolutionary biology has borne the brunt of these debates.</p><p>Evolution has been used to support philosophical and ethical views which most contemporary scientists consider to have been neither mandated by evolution nor supported by science.<sup class="reference" id="_ref-99"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-99"><font color="#0066cc">[120]</font></a></sup> For example, the <a title="Eugenics" href="http://en.wikipedia.org/wiki/Eugenics"><font color="#0066cc">eugenic</font></a> ideas of <a title="Francis Galton" href="http://en.wikipedia.org/wiki/Francis_Galton"><font color="#0066cc">Francis Galton</font></a> were developed into arguments that the human gene pool should be improved by <a title="Selective breeding" href="http://en.wikipedia.org/wiki/Selective_breeding"><font color="#0066cc">selective breeding</font></a> policies, including incentives for reproduction for those of "good stock" and disincentives, such as <a title="Compulsory sterilization" href="http://en.wikipedia.org/wiki/Compulsory_sterilization"><font color="#0066cc">compulsory sterilization</font></a>, <a title="T-4 Euthanasia Program" href="http://en.wikipedia.org/wiki/T-4_Euthanasia_Program"><font color="#0066cc">"euthanasia"</font></a>, and later, <a title="Prenatal testing" href="http://en.wikipedia.org/wiki/Prenatal_testing"><font color="#0066cc">prenatal testing</font></a>, <a title="Birth control" href="http://en.wikipedia.org/wiki/Birth_control"><font color="#0066cc">birth control</font></a>, and <a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering"><font color="#0066cc">genetic engineering</font></a>, for those of "bad stock". Another example of an extension of evolutionary theory that is now widely regarded as unwarranted is "<a title="Social Darwinism" href="http://en.wikipedia.org/wiki/Social_Darwinism"><font color="#0066cc">Social Darwinism</font></a>", a term given to the 19th century <a title="British Whig Party" href="http://en.wikipedia.org/wiki/British_Whig_Party"><font color="#0066cc">Whig</font></a> <a title="Malthusianism" href="http://en.wikipedia.org/wiki/Malthusianism"><font color="#0066cc">Malthusian</font></a> theory developed by <a title="Herbert Spencer" href="http://en.wikipedia.org/wiki/Herbert_Spencer"><font color="#0066cc">Herbert Spencer</font></a> into ideas about "<a title="Survival of the fittest" href="http://en.wikipedia.org/wiki/Survival_of_the_fittest"><font color="#0066cc">survival of the fittest</font></a>" in commerce and human societies as a whole, and by others into claims that <a title="Social inequality" href="http://en.wikipedia.org/wiki/Social_inequality"><font color="#0066cc">social inequality</font></a>, <a title="Racism" href="http://en.wikipedia.org/wiki/Racism"><font color="#0066cc">racism</font></a>, and <a title="Imperialism" href="http://en.wikipedia.org/wiki/Imperialism"><font color="#0066cc">imperialism</font></a> were justified.<sup class="reference" id="_ref-100"><a title="" href="http://en.wikipedia.org/wiki/Evolution#_note-100"><font color="#0066cc">[121]</font></a></sup><br clear="all" />
</p>
<p> </p>
<h2><span class="mw-headline">References</span></h2>
<div class="references-small" style="-moz-column-count: 2; column-count: 2">
<ol class="references">
</ol>
</div>
<p><strong>Introductory</strong></p>
<ul>
<li>Mayr, E., <em>What Evolution Is.</em> (Basic Books, 2002) <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0465044263"><font color="#0066cc">ISBN 0-465-04426-3</font></a> </li>
</ul>
<p><strong>Historical</strong></p>
<ul>
<li>Larson, EJ., <em>Evolution: The Remarkable History of a Scientific Theory.</em> (Modern Library, 2004) <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0679642889"><font color="#0066cc">ISBN 0-679-64288-9</font></a> </li> <li>Zimmer, C., <em>Evolution: The Triumph of an Idea.</em> (Academic Internet Publishers, 2006) <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0060199067"><font color="#0066cc">ISBN 0-060-19906-7</font></a> </li>
</ul>
<p><strong>Advanced</strong></p>
<ul>
<li>Carroll, SB., <em>Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom.</em> (W. W. Norton & Company, 2005) <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0393060160"><font color="#0066cc">ISBN 0-393-06016-0</font></a> </li> <li>Williams, GC., <em>Adaptation and Natural Selection: A Critique of some Current Evolutionary Thought.</em> (Princeton University Press, 1966) <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0691023573"><font color="#0066cc">ISBN 0-691-02357-3</font></a> </li> <li>Dawkins, R., <em>The Selfish Gene.</em> (Oxford University Press, USA; 3rd edition, 2006) <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0199291144"><font color="#0066cc">ISBN 0-199-29114-4</font></a> </li> <li>Gould, SJ, <em>Wonderful Life: The Burgess Shale and the Nature of History.</em> (W. W. Norton & Company, 1990) <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=039330700X"><font color="#0066cc">ISBN 0-393-30700-X</font></a> </li>
</ul>
<p> </p>
<h2><span class="mw-headline">External links</span></h2>
<div class="infobox sisterproject noprint plainlinks" id="section_SpokenWikipedia">
<div style="TEXT-ALIGN: center"><strong><a class="internal" title="Evolution.ogg" href="http://upload.wikimedia.org/wikipedia/en/4/4d/Evolution.ogg"><font color="#0066cc">Listen to this article</font></a><span div style="FONT-WEIGHTCLEAR: boldboth; WHITETEXT-SPACEALIGN: nowrapcenter"> ·</spanstrong> <a title="ImageWikipedia:Evolution.oggSpoken articles" href="http://en.wikipedia.org/wiki/ImageWikipedia:Evolution.oggSpoken_articles"><font color="#0066cc">(info)</font></a><span style="FONT-WEIGHT: bold; WHITE-SPACE: nowrap"/strong> ·</spandiv> <a div class="external textmetadata topicon" titleid="http://tools.wikimedia.de/~gmaxwell/jorbis/JOrbisPlayer.php?path=Evolution.ogg&wiki=en" rel="nofollow" href="http://tools.wikimedia.de/~gmaxwell/jorbis/JOrbisPlayer.php?path=Evolution.ogg&wiki=en"><font color="#0066ccspoken-icon">play in browser</font></a></strong></div><div style="FLOATDISPLAY: leftnone; MARGIN-LEFTRIGHT: 5px30px"><div class="floatnone"><spanstrong><a class="image" title="Spoken Wikipedia" href="http://en.wikipedia.org/wiki/Image:Sound-icon.svg"u><font color="#0066cc"><img height="34" alt="Spoken Wikipedia" width="45" longdesc="/wiki/Image:Sound-icon.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/45px-Sound-icon.svg.png" /></font></au></spanstrong></div>
</div>
</div>
<p><strong>General information</strong></p>