Open main menu

Opengenome.net β

Changes

Genetics

8,816 bytes removed, 05:04, 20 May 2007
no edit summary
<p><strong>Genetics</strong> (from the <font color="#0066cc">Greek</font> <em>genno</em> <strong>&gamma;&epsilon;&nu;&nu;ώ</strong> = give birth) is the <font color="#0066cc">science</font> of <font color="#0066cc">genes</font>, <font color="#0066cc">heredity</font>, and the <font color="#0066cc">variation</font> of <font color="#0066cc">organisms</font>.<sup class="reference" id="_ref-Hartl_and_Jones_0"><font color="#0066cc">[1]</font></sup><sup class="reference" id="_ref-0"><font color="#0066cc">[2]</font></sup> The phenomenon of inheritance has been implicitly utilized in breeding of organisms and selection for desired traits, and the scientific field of genetics seeks to understand the mechanisms of inheritance.</p><p>The genetic information of organisms is contained within the chemical structure of <font color="#0066cc">DNA</font> (deoxyribonucleic acid) molecules. Individually inherited traits, corresponding to regions in the DNA sequence, are called <font color="#0066cc">genes</font>. Genes encode the information necessary for synthesizing <font color="#0066cc">proteins</font> -- complex molecules generally responsible for enzymatic reactions, synthesis, communication and structure within a cell. DNA sequence is transcribed into an intermediate molecule called &quot;<font color="#0066cc">messenger RNA</font>&quot;, and <font color="#0066cc">ribosomes</font> translate this sequence to form a chain of amino acids to form a <font color="#0066cc">protein</font>. This process is known as the <font color="#0066cc">central dogma of molecular biology</font>.</p><p>Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment that determines the ultimate outcome. Thus, while <font color="#0066cc">identical twins</font> have the same DNA and genes, differences in their experiences during development and childhood results in different <font color="#0066cc">personalities</font> and <font color="#0066cc">fingerprints</font>. </p>
<p>&nbsp;</p>
<h2><span class="mw-headline">History</span></h2>
<dl><dd>
<div class="noprint"><em>Main article: <a title="History of genetics" href="http://en.wikipedia.org/wiki/History_of_genetics"><font color="#0066cc">History of genetics</font></a></em></div>
</dd></dl>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 202px"><a class="internal" title="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><font color="#0066cc"><img class="thumbimage" height="183" alt="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." width="200" longdesc="/wiki/Image:Sexlinked_inheritance_white.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Sexlinked_inheritance_white.jpg/200px-Sexlinked_inheritance_white.jpg" /></font></a>
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in <a title="Drosophila" href="http://en.wikipedia.org/wiki/Drosophila"><font color="#0066cc">Drosophila</font></a> led him to the hypothesis that genes are located upon chromosomes.</div>
</div>
</div>
<p><a title="Gregor Johann Mendel" href="http://en.wikipedia.org/wiki/Gregor_Johann_Mendel"><font color="#0066cc">Gregor Johann Mendel</font></a>, a German-Czech <a title="Augustinian" href="http://en.wikipedia.org/wiki/Augustinian"><font color="#0066cc">Augustinian</font></a> monk and scientist, is often called the &quot;father of modern genetics&quot;, a title given to him due to his early work on the heredity of plants. In his paper &quot;Versuche &uuml;ber Pflanzenhybriden&quot; (&quot;<a title="Experiments on Plant Hybridization" href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization"><font color="#0066cc">Experiments on Plant Hybridization</font></a>&quot;), presented in <a title="1865" href="http://en.wikipedia.org/wiki/1865"><font color="#0066cc">1865</font></a> to the Brunn Natural History Society, <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel"><font color="#0066cc">Gregor Mendel</font></a> traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.<sup class="reference" id="_ref-mendel_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel"><font color="#0066cc">[3]</font></a></sup> Although not all features show these patterns of <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">Mendelian inheritance</font></a>, his work suggested the utility of the application of statistics to the study of inheritance.</p><p>The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word &quot;genetics&quot; itself was coined by <font color="#0066cc">William Bateson</font>, a significant proponent of Mendel's work, in a letter to <font color="#0066cc">Adam Sedgwick</font>, dated <font color="#0066cc">April 18</font>, <font color="#0066cc">1905</font>.<sup class="reference" id="_ref-1"><font color="#0066cc">[4]</font></sup> Bateson promoted the term &quot;genetics&quot; publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.<sup class="reference" id="_ref-bateson_genetics_0"><font color="#0066cc">[5]</font></sup></p><p>In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 <font color="#0066cc">Thomas Hunt Morgan</font> argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student <font color="#0066cc">Alfred Sturtevant</font> used the phenomenon of <font color="#0066cc">genetic linkage</font> and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.</p>
<div class="thumb tleft">
<div class="thumbinner" style="WIDTH: 302px"><a class="internal" title="The chemical structure of DNA." href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg"><img class="thumbimage" height="350" alt="The chemical structure of DNA." width="300" longdesc="/wiki/Image:DNA_chemical_structure.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/DNA_chemical_structure.svg/300px-DNA_chemical_structure.svg.png" /></a>
</div>
</div>
<p>Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith"><font color="#0066cc">Frederick Griffith</font></a> published his discovery of the phenomenon of <a title="Transformation (genetics)" href="http://en.wikipedia.org/wiki/Transformation_%28genetics%29"><font color="#0066cc">transformation</font></a> (see <a title="Griffith's experiment" href="http://en.wikipedia.org/wiki/Griffith%27s_experiment"><font color="#0066cc">Griffith's experiment</font></a>); sixteen years later, in 1944, <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery"><font color="#0066cc">Oswald Theodore Avery</font></a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod"><font color="#0066cc">Colin McLeod</font></a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty"><font color="#0066cc">Maclyn McCarty</font></a> used this phenomenon to isolate and identify the molecule responsible for transformation as DNA<sup class="reference" id="_ref-dna_transforming_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming"><font color="#0066cc">[6]</font></a></sup>. The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment"><font color="#0066cc">Hershey-Chase experiment</font></a> in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance.</p><p><a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson"><font color="#0066cc">James D. Watson</font></a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick"><font color="#0066cc">Francis Crick</font></a> resolved the structure of DNA in 1953, using <a title="X-ray crystallography" href="http://en.wikipedia.org/wiki/X-ray_crystallography"><font color="#0066cc">X-ray crystallography</font></a> information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a &quot;complement&quot; on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: <em>&quot;It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.&quot;</em></p><p>In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of <a title="DNA sequencing" href="http://en.wikipedia.org/wiki/DNA_sequencing"><font color="#0066cc">DNA sequencing</font></a> in 1977 enabled the determination of nucleotide sequences on DNA,<sup class="reference" id="_ref-sanger_sequencing_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing"><font color="#0066cc">[7]</font></a></sup> and the <a title="PCR" href="http://en.wikipedia.org/wiki/PCR"><font color="#0066cc">PCR</font></a> method developed by <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis"><font color="#0066cc">Kary Banks Mullis</font></a> in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><font color="#0066cc">Human Genome Project</font></a> and parallel private effort by <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics"><font color="#0066cc">Celera Genomics</font></a>, culminated in the sequencing of the human <a title="Genome" href="http://en.wikipedia.org/wiki/Genome"><font color="#0066cc">genome</font></a> in 2001.</p>
<p><a id="Timeline_of_notable_discoveries" name="Timeline_of_notable_discoveries"></a></p>
<h3><span class="mw-headline">Timeline of notable discoveries</span></h3>
<ul>
<li><a title="1865" href="http://en.wikipedia.org/wiki/1865"><font color="#0066cc">1865</font></a> <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel"><font color="#0066cc">Gregor Mendel</font></a>'s paper, <em><a title="Experiments on Plant Hybridization" href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization"><font color="#0066cc">Experiments on Plant Hybridization</font></a></em><sup class="reference" id="_ref-mendel_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel"><font color="#0066cc">[3]</font></a></sup> </li> <li><a title="1869" href="http://en.wikipedia.org/wiki/1869"><font color="#0066cc">1869</font></a> <a title="Friedrich Miescher" href="http://en.wikipedia.org/wiki/Friedrich_Miescher">Friedrich Miescher<font color="#0066cc">Friedrich Miescher</font><//a> discovers a weak acid in the nuclei of <a title="Leukocyte" href="http://en.wikipedia.org/wiki/Leukocyte"><font color="#0066cc">white blood cells</font></a> that today we call <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a><sup class="reference" id="_ref-Hartl_and_Jones_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-Hartl_and_Jones"><font color="#0066cc">[1]</font></a></sup> </li> <li><a title="1880" href="http://en.wikipedia.org/wiki/1880"><font color="#0066cc">1880</font></a>-<a title="1890" href="http://en.wikipedia.org/wiki/1890"><font color="#0066cc">1890</font></a> <a title="Walther Flemming" href="http://en.wikipedia.org/wiki/Walther_Flemming"><font color="#0066cc">Walther Flemming</font></a>, <a title="Eduard Strasburger" href="http://en.wikipedia.org/wiki/Eduard_Strasburger"><font color="#0066cc">Eduard Strasburger</font></a>, and <a title="Edouard van Beneden" href="http://en.wikipedia.org/wiki/Edouard_van_Beneden"><font color="#0066cc">Edouard van Beneden</font></a> elucidate chromosome distribution during cell division </li> <li><a title="1903" href="http://en.wikipedia.org/wiki/1903"><font color="#0066cc">1903</font></a> <a title="Walter Sutton" href="http://en.wikipedia.org/wiki/Walter_Sutton">Walter Sutton<font color="#0066cc">Walter Sutton</font><//a> hypothesizes that chromosomes, which segregate in a Mendelian fashion, are hereditary units<sup class="reference" id="_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><font color="#0066cc">[8]</font></a></sup> </li> <li><a title="1906" href="http://en.wikipedia.org/wiki/1906"><font color="#0066cc">1906</font></a> The term &quot;genetics&quot; is proposed by the British biologist <a title="William Bateson" href="http://en.wikipedia.org/wiki/William_Bateson"><font color="#0066cc">William Bateson</font></a><sup class="reference" id="_ref-bateson_genetics_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-bateson_genetics"><font color="#0066cc">[5]</font></a></sup> </li> <li><a title="1910" href="http://en.wikipedia.org/wiki/1910"><font color="#0066cc">1910</font></a> <a title="Thomas Hunt Morgan" href="http://en.wikipedia.org/wiki/Thomas_Hunt_Morgan"><font color="#0066cc">Thomas Hunt Morgan</font></a> shows that genes reside on chromosomes, and discovered linked genes on chromosomes that do not follow Mendel's law of independent allele segregation </li> <li><a title="1913" href="http://en.wikipedia.org/wiki/1913"><font color="#0066cc">1913</font></a> <a title="Alfred Sturtevant" href="http://en.wikipedia.org/wiki/Alfred_Sturtevant"><font color="#0066cc">Alfred Sturtevant</font></a> makes the first <a title="Genetic map" href="http://en.wikipedia.org/wiki/Genetic_map"><font color="#0066cc">genetic map</font></a> of a chromosome, showing genes are linearly arranged </li> <li><a title="1918" href="http://en.wikipedia.org/wiki/1918">1918<font color="#0066cc">1918</font><//a> <a title="Ronald Fisher" href="http://en.wikipedia.org/wiki/Ronald_Fisher"><font color="#0066cc">Ronald Fisher</font></a> publishes &quot;<a title="The Correlation Between Relatives on the Supposition of Mendelian Inheritance" href="http://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance"><font color="#0066cc">The Correlation Between Relatives on the Supposition of Mendelian Inheritance</font></a>&quot; the <a title="Modern synthesis" href="http://en.wikipedia.org/wiki/Modern_synthesis"><font color="#0066cc">modern synthesis</font></a> starts. </li> <li><a title="1928" href="http://en.wikipedia.org/wiki/1928"><font color="#0066cc">1928</font></a> <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith"><font color="#0066cc">Frederick Griffith</font>Frederick Griffith</a> discovers a hereditary molecule that is transmissible between bacteria (see <a title="Griffiths experiment" href="http://en.wikipedia.org/wiki/Griffiths_experiment"><font color="#0066cc">Griffiths experiment</font></a>) </li> <li><a title="1931" href="http://en.wikipedia.org/wiki/1931"><font color="#0066cc">1931</font></a> <a title="Crossing over" href="http://en.wikipedia.org/wiki/Crossing_over"><font color="#0066cc">Crossing over</font></a> is the cause of <a title="Recombination" href="http://en.wikipedia.org/wiki/Recombination"><font color="#0066cc">recombination</font></a> (see <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock"><font color="#0066cc">Barbara McClintock</font></a> and <a title="Cytogenetics" href="http://en.wikipedia.org/wiki/Cytogenetics"><font color="#0066cc">cytogenetics</font></a>) </li> <li><a title="1941" href="http://en.wikipedia.org/wiki/1941"><font color="#0066cc">1941</font></a> <a title="Edward Lawrie Tatum" href="http://en.wikipedia.org/wiki/Edward_Lawrie_Tatum"><font color="#0066cc">Edward Lawrie Tatum</font></a> and <a title="George Wells Beadle" href="http://en.wikipedia.org/wiki/George_Wells_Beadle"><font color="#0066cc">George Wells Beadle</font></a> show that genes code for <a title="Protein" href="http://en.wikipedia.org/wiki/Protein"><font color="#0066cc">proteins</font></a><sup class="reference" id="_ref-2"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-2"><font color="#0066cc">[9]</font></a></sup> </li> <li><a title="1944" href="http://en.wikipedia.org/wiki/1944"><font color="#0066cc">1944</font></a> <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery"><font color="#0066cc">Oswald Theodore Avery</font></a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod"><font color="#0066cc">Colin McLeod</font></a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty"><font color="#0066cc">Maclyn McCarty</font></a> isolate <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a> as the genetic material (at that time called <a title="Transforming principle" href="http://en.wikipedia.org/wiki/Transforming_principle"><font color="#0066cc">transforming principle</font></a>)<sup class="reference" id="_ref-dna_transforming_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming"><font color="#0066cc">[6]</font></a></sup> </li> <li><a title="1950" href="http://en.wikipedia.org/wiki/1950"><font color="#0066cc">1950</font></a> <a title="Erwin Chargaff" href="http://en.wikipedia.org/wiki/Erwin_Chargaff"><font color="#0066cc">Erwin Chargaff</font></a> shows that the four nucleotides are not present in nucleic acids in stable proportions, but that some general rules appear to hold (e.g., the nucleotide bases Adenine-Thymine and Cytosine-Guanine always remain in equal proportions). </li> <li><a title="1950" href="http://en.wikipedia.org/wiki/1950"><font color="#0066cc">1950</font></a> <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock"><font color="#0066cc">Barbara McClintock</font></a> discovers <a title="Transposon" href="http://en.wikipedia.org/wiki/Transposon"><font color="#0066cc">transposons</font></a> in <a title="Maize" href="http://en.wikipedia.org/wiki/Maize"><font color="#0066cc">maize</font></a> </li> <li><a title="1952" href="http://en.wikipedia.org/wiki/1952"><font color="#0066cc">1952</font></a> The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment"><font color="#0066cc">Hershey-Chase experiment</font></a> proves the genetic information of <a title="Phage" href="http://en.wikipedia.org/wiki/Phage"><font color="#0066cc">phages</font></a> (and all other organisms) to be DNA </li> <li><a title="1953" href="http://en.wikipedia.org/wiki/1953"><font color="#0066cc">1953</font></a> DNA structure is resolved to be a <a title="Double helix" href="http://en.wikipedia.org/wiki/Double_helix"><font color="#0066cc">double helix</font></a> by <a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson"><font color="#0066cc">James D. Watson</font></a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick"><font color="#0066cc">Francis Crick</font></a>, with the help of <a title="Rosalind Franklin" href="http://en.wikipedia.org/wiki/Rosalind_Franklin"><font color="#0066cc">Rosalind Franklin</font></a><sup class="reference" id="_ref-3"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-3"><font color="#0066cc">[10]</font></a></sup> </li> <li><a title="1956" href="http://en.wikipedia.org/wiki/1956"><font color="#0066cc">1956</font></a> <a title="Joe Hin Tjio" href="http://en.wikipedia.org/wiki/Joe_Hin_Tjio"><font color="#0066cc">Joe Hin Tjio</font></a> and <a title="Albert Levan" href="http://en.wikipedia.org/wiki/Albert_Levan"><font color="#0066cc">Albert Levan</font></a> established the correct chromosome number in humans to be 46 </li> <li><a title="1958" href="http://en.wikipedia.org/wiki/1958"><font color="#0066cc">1958</font></a> The <a title="Meselson-Stahl experiment" href="http://en.wikipedia.org/wiki/Meselson-Stahl_experiment"><font color="#0066cc">Meselson-Stahl experiment</font></a> demonstrates that DNA is <a title="Semiconservative replication" href="http://en.wikipedia.org/wiki/Semiconservative_replication"><font color="#0066cc">semiconservatively replicated</font></a><sup class="reference" id="_ref-4"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-4"><font color="#0066cc">[11]</font></a></sup> </li> <li><a title="1961" href="http://en.wikipedia.org/wiki/1961"><font color="#0066cc">1961</font></a> The <a title="Genetic code" href="http://en.wikipedia.org/wiki/Genetic_code"><font color="#0066cc">genetic code</font></a> is arranged in triplets </li> <li><a title="1964" href="http://en.wikipedia.org/wiki/1964"><font color="#0066cc">1964</font></a> <a title="Howard Temin" href="http://en.wikipedia.org/wiki/Howard_Temin"><font color="#0066cc">Howard Temin</font></a> showed using <a title="RNA virus" href="http://en.wikipedia.org/wiki/RNA_virus"><font color="#0066cc">RNA viruses</font></a> that Watson's <a title="Central dogma" href="http://en.wikipedia.org/wiki/Central_dogma"><font color="#0066cc">central dogma</font></a> is not always true </li> <li><a title="1970" href="http://en.wikipedia.org/wiki/1970"><font color="#0066cc">1970</font></a> <a title="Restriction enzymes" href="http://en.wikipedia.org/wiki/Restriction_enzymes"><font color="#0066cc">Restriction enzymes</font></a> were discovered in studies of a bacterium, <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae"><font color="#0066cc">Haemophilus influenzae</font></a></em>, enabling scientists to cut and paste DNA </li> <li><a title="1972" href="http://en.wikipedia.org/wiki/1972"><font color="#0066cc">1972</font></a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers"><font color="#0066cc">Walter Fiers</font></a> and his team at the Laboratory of Molecular Biology of the <a title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent"><font color="#0066cc">University of Ghent</font></a> (<a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent"><font color="#0066cc">Ghent</font></a>, <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium"><font color="#0066cc">Belgium</font></a>) were the first to determine the sequence of a gene: the gene for <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2"><font color="#0066cc">Bacteriophage MS2</font></a> coat protein<sup class="reference" id="_ref-5"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-5"><font color="#0066cc">[12]</font></a></sup>. </li> <li><a title="1976" href="http://en.wikipedia.org/wiki/1976"><font color="#0066cc">1976</font></a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers"><font color="#0066cc">Walter Fiers</font></a> and his team determine the complete nucleotide-sequence of <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2"><font color="#0066cc">Bacteriophage MS2</font></a>-RNA<sup class="reference" id="_ref-6"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-6"><font color="#0066cc">[13]</font></a></sup> </li> <li><a title="1977" href="http://en.wikipedia.org/wiki/1977"><font color="#0066cc">1977</font></a> DNA is <a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing"><font color="#0066cc">sequenced</font></a> for the first time by <a title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger"><font color="#0066cc">Fred Sanger</font></a>, <a title="Walter Gilbert" href="http://en.wikipedia.org/wiki/Walter_Gilbert"><font color="#0066cc">Walter Gilbert</font></a>, and <a title="Allan Maxam" href="http://en.wikipedia.org/wiki/Allan_Maxam"><font color="#0066cc">Allan Maxam</font></a> working independently. Sanger's lab complete the entire genome of sequence of <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage"><font color="#0066cc">Bacteriophage</font></a> <a title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage"><font color="#0066cc">&Phi;-X174</font></a><sup class="reference" id="_ref-sanger_sequencing_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing"><font color="#0066cc">[7]</font></a></sup>. </li> <li><a title="1983" href="http://en.wikipedia.org/wiki/1983"><font color="#0066cc">1983</font></a> <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis"><font color="#0066cc">Kary Banks Mullis</font></a> discovers the <a title="Polymerase chain reaction" href="http://en.wikipedia.org/wiki/Polymerase_chain_reaction"><font color="#0066cc">polymerase chain reaction</font></a> enabling the easy amplification of DNA </li> <li><a title="1985" href="http://en.wikipedia.org/wiki/1985"><font color="#0066cc">1985</font></a> <a title="Alec Jeffreys" href="http://en.wikipedia.org/wiki/Alec_Jeffreys"><font color="#0066cc">Alec Jeffreys</font></a> discovers genetic finger printing. </li> <li><a title="1989" href="http://en.wikipedia.org/wiki/1989"><font color="#0066cc">1989</font></a> The first human gene is sequenced by <a title="Francis Collins" href="http://en.wikipedia.org/wiki/Francis_Collins"><font color="#0066cc">Francis Collins</font></a> and <a title="Lap-Chee Tsui" href="http://en.wikipedia.org/wiki/Lap-Chee_Tsui"><font color="#0066cc">Lap-Chee Tsui</font></a>. It encodes the <a title="CFTR" href="http://en.wikipedia.org/wiki/CFTR"><font color="#0066cc">CFTR</font></a> protein. Defects in this gene cause <a title="Cystic fibrosis" href="http://en.wikipedia.org/wiki/Cystic_fibrosis"><font color="#0066cc">cystic fibrosis</font></a> </li> <li><a title="1995" href="http://en.wikipedia.org/wiki/1995"><font color="#0066cc">1995</font></a> The genome of <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae"><font color="#0066cc">Haemophilus influenzae</font></a></em> is the first genome of a free living organism to be sequenced. </li> <li><a title="1996" href="http://en.wikipedia.org/wiki/1996"><font color="#0066cc">1996</font></a> Saccharomyces cerevisiae is the first <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote"><font color="#0066cc">eukaryote</font></a> genome sequence to be released </li> <li><a title="1998" href="http://en.wikipedia.org/wiki/1998"><font color="#0066cc">1998</font></a> The first genome sequence for a multicellular eukaryote, <em><a title="C. elegans" href="http://en.wikipedia.org/wiki/C._elegans"><font color="#0066cc">C. elegans</font></a></em> is released. </li> <li><a title="2001" href="http://en.wikipedia.org/wiki/2001"><font color="#0066cc">2001</font></a> First draft sequences of the human genome are released simultaneously by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><font color="#0066cc">Human Genome Project</font></a> and <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics"><font color="#0066cc">Celera Genomics</font></a>. </li> <li><a title="2003" href="http://en.wikipedia.org/wiki/2003"><font color="#0066cc">2003</font></a> (<a title="April 14" href="http://en.wikipedia.org/wiki/April_14"><font color="#0066cc">14 April</font></a>) Successful completion of <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><font color="#0066cc">Human Genome Project</font></a> with 98% of the genome sequenced to a 99.99% <a title="Accuracy" href="http://en.wikipedia.org/wiki/Accuracy"><font color="#0066cc">accuracy</font></a>.<sup class="reference" id="_ref-7"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-7"><font color="#0066cc">[14]</font></a></sup> </li>
</ul>
<p><a id="Areas_of_genetics" name="Areas_of_genetics"></a></p>
<p><a id="Classical_genetics" name="Classical_genetics"></a></p>
<h3><span class="mw-headline">Classical genetics</span></h3>
<dl><dd><em>Main articles:</em> <a title="Classical genetics" href="http://en.wikipedia.org/wiki/Classical_genetics"><font color="#0066cc">Classical genetics</font></a>, <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">Mendelian inheritance</font></a> </dd></dl><p>Classical genetics consists of the techniques and methodologies of genetics that predate the advent of <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><font color="#0066cc">molecular biology</font></a>. After the discovery of the genetic code and such tools of <a title="Clone (genetics)" href="http://en.wikipedia.org/wiki/Clone_%28genetics%29"><font color="#0066cc">cloning</font></a> as <a title="Restriction enzyme" href="http://en.wikipedia.org/wiki/Restriction_enzyme"><font color="#0066cc">restriction enzymes</font></a>, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">Mendel's laws</font></a> and <a title="Muller's morphs" href="http://en.wikipedia.org/wiki/Muller%27s_morphs"><font color="#0066cc">Muller's morphs</font></a>. Patterns of inheritance still remain a useful tool for the study of <a title="Genetic disease" href="http://en.wikipedia.org/wiki/Genetic_disease"><font color="#0066cc">genetic diseases</font></a>.</p>
<p><a id="Behavioral_genetics" name="Behavioral_genetics"></a></p>
<h3><span class="mw-headline">Behavioral genetics</span></h3>
<dl><dd><em>Main article:</em> <a title="Behavioral genetics" href="http://en.wikipedia.org/wiki/Behavioral_genetics"><font color="#0066cc">Behavioral genetics</font></a> </dd></dl><p>Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection"><font color="#0066cc">natural selection</font></a>, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as <a title="Richard Dawkins" href="http://en.wikipedia.org/wiki/Richard_Dawkins"><font color="#0066cc">Richard Dawkins</font></a> and <a title="W. D. Hamilton" href="http://en.wikipedia.org/wiki/W._D._Hamilton"><font color="#0066cc">W. D. Hamilton</font></a> to propose explanations, including the theories of <a title="Kin selection" href="http://en.wikipedia.org/wiki/Kin_selection"><font color="#0066cc">kin selection</font></a> and <a title="Reciprocal altruism" href="http://en.wikipedia.org/wiki/Reciprocal_altruism"><font color="#0066cc">reciprocal altruism</font></a>. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.</p>
<p><a id="Clinical_genetics" name="Clinical_genetics"></a></p>
<h3><span class="mw-headline">Clinical genetics</span></h3>
<dl><dd>
<div class="noprint"><em>Main article: <a title="Clinical genetics" href="http://en.wikipedia.org/wiki/Clinical_genetics"><font color="#0066cc">Clinical genetics</font></a></em></div>
</dd></dl>
<p><a title="Physician" href="http://en.wikipedia.org/wiki/Physician"><font color="#0066cc">Physicians</font></a> who are trained as Geneticists diagnose, treat, and counsel patients with <a title="Genetic disorder" href="http://en.wikipedia.org/wiki/Genetic_disorder"><font color="#0066cc">genetic disorders</font></a> or <a title="Syndrome" href="http://en.wikipedia.org/wiki/Syndrome"><font color="#0066cc">syndromes</font></a>. These doctors are typically trained in a genetics <a title="Residency (medicine)" href="http://en.wikipedia.org/wiki/Residency_%28medicine%29"><font color="#0066cc">residency</font></a> and/or <a title="Fellowship" href="http://en.wikipedia.org/wiki/Fellowship"><font color="#0066cc">fellowship</font></a>.</p>
<p>Clinical genetics is also the study of genetic causes of clinical diseases.</p>
<p><a id="Molecular_genetics" name="Molecular_genetics"></a></p>
<h3><span class="mw-headline">Molecular genetics</span></h3>
<dl><dd>
<div class="noprint"><em>Main article: <a title="Molecular genetics" href="http://en.wikipedia.org/wiki/Molecular_genetics"><font color="#0066cc">Molecular genetics</font></a></em></div>
</dd></dl>
<p>Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule"><font color="#0066cc">molecular</font></a> level. Molecular genetics employs the methods of both classical genetics (such as <a title="Hybridization" href="http://en.wikipedia.org/wiki/Hybridization"><font color="#0066cc">hybridization</font></a>) and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><font color="#0066cc">molecular biology</font></a>. It is so-called to differentiate it from other sub fields of genetics such as <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics"><font color="#0066cc">ecological genetics</font></a> and <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics"><font color="#0066cc">population genetics</font></a>. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct <a title="Scientific classification" href="http://en.wikipedia.org/wiki/Scientific_classification"><font color="#0066cc">scientific classification</font></a> of organisms: this is called <a title="Molecular systematics" href="http://en.wikipedia.org/wiki/Molecular_systematics"><font color="#0066cc">molecular systematics</font></a>. The study of inherited features not strictly associated with changes in the <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a> sequence is called <a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics"><font color="#0066cc">epigenetics</font></a>.</p><p>Some take the view that <a title="Life" href="http://en.wikipedia.org/wiki/Life"><font color="#0066cc">life</font></a> can be defined, in <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule"><font color="#0066cc">molecular</font></a> terms, as the set of strategies which <a title="RNA" href="http://en.wikipedia.org/wiki/RNA"><font color="#0066cc">RNA</font></a> polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the <a title="Origin of life" href="http://en.wikipedia.org/wiki/Origin_of_life"><font color="#0066cc">origin of life</font></a>, specifically the <a title="RNA world hypothesis" href="http://en.wikipedia.org/wiki/RNA_world_hypothesis"><font color="#0066cc">RNA world hypothesis</font></a>.</p>
<p><a id="Population.2C_quantitative_and_ecological_genetics" name="Population.2C_quantitative_and_ecological_genetics"></a></p>
<h3><span class="mw-headline">Population, quantitative and ecological genetics</span></h3>
<dl><dd><em>Main articles:</em> <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics"><font color="#0066cc">Population genetics</font></a>, <a title="Quantitative genetics" href="http://en.wikipedia.org/wiki/Quantitative_genetics"><font color="#0066cc">Quantitative genetics</font></a>, <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics"><font color="#0066cc">Ecological genetics</font></a> </dd></dl><p>Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying <a title="Population" href="http://en.wikipedia.org/wiki/Population"><font color="#0066cc">populations</font></a> of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in <a title="Allele frequency" href="http://en.wikipedia.org/wiki/Allele_frequency"><font color="#0066cc">allele frequencies</font></a> of genes under the influence of the four evolutionary forces: <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection"><font color="#0066cc">natural selection</font></a>, <a title="Genetic drift" href="http://en.wikipedia.org/wiki/Genetic_drift"><font color="#0066cc">genetic drift</font></a>, <a title="Mutation" href="http://en.wikipedia.org/wiki/Mutation"><font color="#0066cc">mutation</font></a> and <a title="Migration" href="http://en.wikipedia.org/wiki/Migration"><font color="#0066cc">migration</font></a>. It is the theory that attempts to explain such phenomena as <a title="Adaptation (biology)" href="http://en.wikipedia.org/wiki/Adaptation_%28biology%29"><font color="#0066cc">adaptation</font></a> and <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation"><font color="#0066cc">speciation</font></a>.</p><p>The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to <a title="Selection" href="http://en.wikipedia.org/wiki/Selection"><font color="#0066cc">selection</font></a> given data on the <a title="Phenotype" href="http://en.wikipedia.org/wiki/Phenotype"><font color="#0066cc">phenotype</font></a> and relationships of individuals. A more recent development of quantitative genetics is the analysis of <a title="Quantitative trait loci" href="http://en.wikipedia.org/wiki/Quantitative_trait_loci"><font color="#0066cc">quantitative trait loci</font></a>. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the <a title="Chromosome" href="http://en.wikipedia.org/wiki/Chromosome"><font color="#0066cc">chromosome</font></a> requires accurate phenotypic, pedigree and marker data from a large number of related individuals.</p><p>Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on <a title="Ecology" href="http://en.wikipedia.org/wiki/Ecology"><font color="#0066cc">ecological</font></a> issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.</p><p>Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of <a title="Mendelian randomization" href="http://en.wikipedia.org/wiki/Mendelian_randomization"><font color="#0066cc">Mendelian randomization</font></a>.</p>
<p><a id="Genomics" name="Genomics"></a></p>
<h3><span class="mw-headline">Genomics</span></h3>
<dl><dd>
<div class="noprint"><em>Main article: <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics"><font color="#0066cc">Genomics</font></a></em></div>
</dd></dl>
<p>A more recent development is the rise of <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics"><font color="#0066cc">genomics</font></a>, which attempts the study of large-scale genetic patterns across the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome"><font color="#0066cc">genome</font></a> for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and <a title="Sequence profiling tool" href="http://en.wikipedia.org/wiki/Sequence_profiling_tool"><font color="#0066cc">Sequence profiling tool</font></a> using <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics"><font color="#0066cc">bioinformatics</font></a> approaches for analysis of large sets of data.</p>
<p><a id="Closely-related_fields" name="Closely-related_fields"></a></p>
<h3><span class="mw-headline">Closely-related fields</span></h3>
<p>The science which grew out of the union of <a title="Biochemistry" href="http://en.wikipedia.org/wiki/Biochemistry"><font color="#0066cc">biochemistry</font></a> and genetics is widely known as <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><font color="#0066cc">molecular biology</font></a>. The term &quot;genetics&quot; is often widely conflated with the notion of <a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering"><font color="#0066cc">genetic engineering</font></a>, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics"><font color="#0066cc">population genetics</font></a> and <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics"><font color="#0066cc">ecological genetics</font></a>), rather than genetic engineering.</p>
<p><a id="References" name="References"></a></p>
<h2><span class="mw-headline">References</span></h2>
<ol class="references">
<li id="_note-Hartl_and_Jones">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite class="book" style="FONT-STYLE: normal">Daniel Hartl and Elizabeth Jones (2005). <em>Genetics: Analysis of Genes and Genomes, 6th edition</em>. Jones &amp; Bartlett.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.title=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.au=Daniel+Hartl+and+Elizabeth+Jones&amp;rft.date=2005&amp;rft.pub=Jones+%26+Bartlett">&nbsp;</span> 854 pages. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0763715115"><font color="#0066cc">ISBN 0-7637-1511-5</font></a>. </li> <li id="_note-0"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-0"><font color="#0066cc">^</font></a></strong> <cite class="book" style="FONT-STYLE: normal">Robert C. King, Willliam D. Stansfield, Pamela K. Mulligan (2006). <em>A Dictionary of Genetics, 7th edition</em>. New York: Oxford University Press.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.title=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.au=Robert+C.+King%2C+Willliam+D.+Stansfield%2C+Pamela+K.+Mulligan&amp;rft.date=2006&amp;rft.pub=Oxford+University+Press&amp;rft.place=New+York">&nbsp;</span> 596 pages. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0195307615"><font color="#0066cc">ISBN 0-19-530761-5</font></a> (paper). </li> <li id="_note-mendel">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite style="FONT-STYLE: normal">Mendel, G.. &quot;Versuche &uuml;ber Pflanzen-Hybriden&quot;. <em>Verh. Naturforsch. Ver. Br&uuml;nn</em> <strong>4</strong>: 3-47.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Versuche+%C3%BCber+Pflanzen-Hybriden&amp;rft.title=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.jtitle=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.volume=4&amp;rft.au=Mendel%2C+G.&amp;rft.pages=3-47">&nbsp;</span> (in English in 1901, J. R. Hortic. Soc. 26: 1&ndash;32) </li> <li id="_note-1"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-1"><font color="#0066cc">^</font></a></strong> <a class="external text" title="http://www.jic.ac.uk/corporate/about/bateson.htm" rel="nofollow" href="http://www.jic.ac.uk/corporate/about/bateson.htm"><font color="#0066cc">Online copy of William Bateson's letter to Adam Sedgwick</font></a> </li> <li id="_note-bateson_genetics">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite style="FONT-STYLE: normal">Bateson, William (1907). &quot;The Progress of Genetic Research&quot;. Wilks, W. (editor) <em>Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding</em>, London: Royal Horticultural Society.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Report+of+the+Third+1906+International+Conference+on+Genetics%3A+Hybridization+%28the+cross-breeding+of+genera+or+species%29%2C+the+cross-breeding+of+varieties%2C+and+general+plant+breeding&amp;rft.atitle=The+Progress+of+Genetic+Research&amp;rft.au=Bateson%2C+William&amp;rft.date=1907&amp;rft.pub=Royal+Horticultural+Society&amp;rft.place=London">&nbsp;</span> <dl><dd>Although the conference was titled &quot;International Conference on Hybridisation and Plant Breeding&quot;, Wilks changed the title for publication as a result of Bateson's speech. </dd></dl></li> <li id="_note-dna_transforming">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite style="FONT-STYLE: normal">Avery, MacLeod, and McCarty (1944). &quot;Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III&quot;. <em>Journal of Experimental Medicine</em> <strong>79</strong> (1): 137-58.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Studies+on+the+Chemical+Nature+of+the+Substance+Inducing+Transformation+of+Pneumococcal+Types%3A+Induction+of+Transformation+by+a+Desoxyribonucleic+Acid+Fraction+Isolated+from+Pneumococcus+Type+III&amp;rft.title=Journal+of+Experimental+Medicine&amp;rft.jtitle=Journal+of+Experimental+Medicine&amp;rft.date=1944&amp;rft.volume=79&amp;rft.issue=1&amp;rft.au=Avery%2C+MacLeod%2C+and+McCarty&amp;rft.pages=137-58">&nbsp;</span><a class="external text" title="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226"><font color="#0066cc">35th anniversary reprint available</font></a> </li> <li id="_note-sanger_sequencing">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94 </li> <li id="_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Ernest W. Crow and James F. Crow (2002). &quot;<a class="external text" title="http://www.genetics.org/cgi/content/full/160/1/1" rel="nofollow" href="http://www.genetics.org/cgi/content/full/160/1/1"><font color="#0066cc">100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity</font></a>&quot;. <em>Genetics</em> <strong>160</strong>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=100+Years+Ago%3A+Walter+Sutton+and+the+Chromosome+Theory+of+Heredity&amp;rft.title=Genetics&amp;rft.jtitle=Genetics&amp;rft.date=2002&amp;rft.volume=160&amp;rft.au=Ernest+W.+Crow+and+James+F.+Crow&amp;rft_id=http%3A%2F%2Fwww.genetics.org%2Fcgi%2Fcontent%2Ffull%2F160%2F1%2F1">&nbsp;</span> </li> <li id="_note-2"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-2"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Beadle GW, Tatum EL (1941). &quot;Genetic control of biochemical reactions in neurospora&quot;. <em>PNAS</em> <strong>27</strong>: 499-506.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Genetic+control+of+biochemical+reactions+in+neurospora&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1941&amp;rft.volume=27&amp;rft.au=Beadle+GW%2C+Tatum+EL&amp;rft.pages=499-506">&nbsp;</span> </li> <li id="_note-3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-3"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Watson JD and Crick FH (1953). &quot;Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid&quot;. <em>Nature</em> <strong>171</strong> (4356): 737-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Molecular+structure+of+nucleic+acids%3B+a+structure+for+deoxyribose+nucleic+acid&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1953&amp;rft.volume=171&amp;rft.issue=4356&amp;rft.au=Watson+JD+and+Crick+FH&amp;rft.pages=737-8">&nbsp;</span> </li> <li id="_note-4"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-4"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Meselson, M. and Stahl, F.W. (1958). &quot;The Replication of DNA in Escherichia coli&quot;. <em>PNAS</em> <strong>44</strong>: 671-82.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=The+Replication+of+DNA+in+Escherichia+coli&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1958&amp;rft.volume=44&amp;rft.au=Meselson%2C+M.+and+Stahl%2C+F.W.&amp;rft.pages=671-82">&nbsp;</span> </li> <li id="_note-5"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-5"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). &quot;Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein&quot;. <em>Nature</em> <strong>237</strong> (5350): 82-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Nucleotide+sequence+of+the+gene+coding+for+the+bacteriophage+MS2+coat+protein&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1972&amp;rft.volume=237&amp;rft.issue=5350&amp;rft.au=Min+Jou+W%2C+Haegeman+G%2C+Ysebaert+M%2C+Fiers+W.&amp;rft.pages=82-8">&nbsp;</span> </li> <li id="_note-6"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-6"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Fiers W et al. (1976). &quot;Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene&quot;. <em>Nature</em> <strong>260</strong>: 500-507.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Complete+nucleotide-sequence+of+Bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1976&amp;rft.volume=260&amp;rft.au=Fiers+W+et+al.&amp;rft.pages=500-507">&nbsp;</span> </li> <li id="_note-7"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-7"><font color="#0066cc">^</font></a></strong> <a class="external free" title="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf" rel="nofollow" href="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf"><font color="#0066cc">http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf</font></a> </li>
</ol>
<p><a id="See_also" name="See_also"></a></p>
<h2><span class="mw-headline">See also</span></h2>
<ul>
<li><a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics"><font color="#0066cc">Epigenetics</font></a> </li> <li><a title="Evolution" href="http://en.wikipedia.org/wiki/Evolution"><font color="#0066cc">Evolution</font></a> </li> <li><a title="List of genetics-related topics" href="http://en.wikipedia.org/wiki/List_of_genetics-related_topics"><font color="#0066cc">List of genetics-related topics</font></a> </li> <li><a title="List of genetic engineering topics" href="http://en.wikipedia.org/wiki/List_of_genetic_engineering_topics"><font color="#0066cc">List of genetic engineering topics</font></a> </li> <li><a title="Central dogma of molecular biology" href="http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology"><font color="#0066cc">Central dogma of molecular biology</font></a> </li> <li><a title="Chimera (genetics)" href="http://en.wikipedia.org/wiki/Chimera_%28genetics%29"><font color="#0066cc">Chimerism</font></a> </li> <li><a title="Gene gun" href="http://en.wikipedia.org/wiki/Gene_gun"><font color="#0066cc">Gene gun</font></a> </li> <li><a title="Gene regulatory network" href="http://en.wikipedia.org/wiki/Gene_regulatory_network"><font color="#0066cc">Gene regulatory network</font></a> </li> <li><a title="Genetic counseling" href="http://en.wikipedia.org/wiki/Genetic_counseling"><font color="#0066cc">Genetic counseling</font></a> </li> <li><a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering"><font color="#0066cc">Genetic engineering</font></a> </li> <li><a title="Genetic screen" href="http://en.wikipedia.org/wiki/Genetic_screen"><font color="#0066cc">Genetic screen</font></a> </li> <li><a title="Genetic testing" href="http://en.wikipedia.org/wiki/Genetic_testing"><font color="#0066cc">Genetic testing</font></a> </li> <li><a title="List of publications in biology" href="http://en.wikipedia.org/wiki/List_of_publications_in_biology#Genetics"><font color="#0066cc">Important publications in genetics</font></a> </li> <li><a title="List of genetics research organizations" href="http://en.wikipedia.org/wiki/List_of_genetics_research_organizations"><font color="#0066cc">List of genetics research organizations</font></a> </li> <li><a title="List of geneticists" href="http://en.wikipedia.org/wiki/List_of_geneticists"><font color="#0066cc">List of geneticists</font></a> </li> <li><a title="Human mitochondrial genetics" href="http://en.wikipedia.org/wiki/Human_mitochondrial_genetics"><font color="#0066cc">Human mitochondrial genetics</font></a> </li> <li><a title="Reprogenetics" href="http://en.wikipedia.org/wiki/Reprogenetics"><font color="#0066cc">Reprogenetics</font></a> </li> <li><a title="Punnett square" href="http://en.wikipedia.org/wiki/Punnett_square"><font color="#0066cc">Punnett square</font></a> </li> <li><a title="Genetically modified food" href="http://en.wikipedia.org/wiki/Genetically_modified_food"><font color="#0066cc">Genetically modified food</font></a> </li> <li><a title="Transgenic plants" href="http://en.wikipedia.org/wiki/Transgenic_plants"><font color="#0066cc">Transgenic plants</font></a> </li>
</ul>
<p><a id="Journals" name="Journals"></a></p>
<h2><span class="mw-headline">Journals</span></h2>
<ul>
<li><em><a title="American Journal of Human Genetics" href="http://en.wikipedia.org/wiki/American_Journal_of_Human_Genetics"><font color="#0066cc">American Journal of Human Genetics</font></a></em> </li> <li><em><a class="new" title="American Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=American_Journal_of_Medical_Genetics&amp;action=edit"><font color="#0066cc">American Journal of Medical Genetics</font></a></em> </li> <li><em><a title="Annals of Human Genetics" href="http://en.wikipedia.org/wiki/Annals_of_Human_Genetics"><font color="#0066cc">Annals of Human Genetics</font></a></em> </li> <li><em><a title="European Journal of Human Genetics" href="http://en.wikipedia.org/wiki/European_Journal_of_Human_Genetics"><font color="#0066cc">European Journal of Human Genetics</font></a></em> </li> <li><em><a title="Genome Research" href="http://en.wikipedia.org/wiki/Genome_Research"><font color="#0066cc">Genome Research</font></a></em> </li> <li><em><a class="new" title="Genomics (journal)" href="http://en.wikipedia.org/w/index.php?title=Genomics_%28journal%29&amp;action=edit"><font color="#0066cc">Genomics</font></a></em> </li> <li><em><a title="Genetics (journal)" href="http://en.wikipedia.org/wiki/Genetics_%28journal%29"><font color="#0066cc">Genetics</font></a></em> </li> <li><em><a title="Heredity (journal)" href="http://en.wikipedia.org/wiki/Heredity_%28journal%29"><font color="#0066cc">Heredity</font></a></em> </li> <li><em><a class="new" title="Human Molecular Genetics" href="http://en.wikipedia.org/w/index.php?title=Human_Molecular_Genetics&amp;action=edit"><font color="#0066cc">Human Molecular Genetics</font></a></em> </li> <li><em><a title="Journal of Genetics" href="http://en.wikipedia.org/wiki/Journal_of_Genetics"><font color="#0066cc">Journal of Genetics</font></a></em> </li> <li><em><a class="new" title="Journal of Human Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Human_Genetics&amp;action=edit"><font color="#0066cc">Journal of Human Genetics</font></a></em> </li> <li><em><a class="new" title="Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Medical_Genetics&amp;action=edit"><font color="#0066cc">Journal of Medical Genetics</font></a></em> </li> <li><em><a title="Nature Reviews Genetics" href="http://en.wikipedia.org/wiki/Nature_Reviews_Genetics"><font color="#0066cc">Nature Reviews Genetics</font></a></em> </li> <li><em><a title="PLoS Genetics" href="http://en.wikipedia.org/wiki/PLoS_Genetics"><font color="#0066cc">PLoS Genetics</font></a></em> </li>
</ul>
<p><a id="External_link" name="External_link"></a></p>
<div class="floatnone"><span><a class="image" title="Wikibooks" href="http://en.wikipedia.org/wiki/Image:Wikibooks-logo-en.svg"></a></span></div>
</div>
<div style="MARGIN-LEFT: 60px"><a title="Wikibooks" href="http://en.wikipedia.org/wiki/Wikibooks"><font color="#0066cc">Wikibooks</font></a> has a book on the topic of<div style="MARGIN-LEFT: 10px"><em><a class="extiw" title="wikibooks:Genetics" href="http://en.wikibooks.org/wiki/Genetics"><font color="#0066cc">Genetics</font></a></em></div>
</div>
</div>
<div class="infobox sisterproject">
<div class="floatleft"><span><a class="image" title="" href="http://en.wikipedia.org/wiki/Image:Commons-logo.svg"><font color="#0066cc"></font></a></span></div><div style="MARGIN-LEFT: 60px"><a title="Wikimedia Commons" href="http://en.wikipedia.org/wiki/Wikimedia_Commons"><font color="#0066cc">Wikimedia Commons</font></a> has media related to:<div style="MARGIN-LEFT: 10px"><em><strong><a class="extiw" title="commons:Category:Genetics" href="http://commons.wikimedia.org/wiki/Category:Genetics"><font color="#0066cc">Genetics</font></a></strong></em></div>
</div>
</div>
Anonymous user