Difference between revisions of "Genetics"

From Opengenome.net
Line 1: Line 1:
<p><strong>Genetics</strong> (from the Greek <em>genno</em> <strong>&gamma;&epsilon;&nu;&nu;ώ</strong> = give birth) is the science of genes, heredity, and the variation of organisms.<sup class="reference" id="_ref-Hartl_and_Jones_0">[1]</sup><sup class="reference" id="_ref-0">[2]</sup> The phenomenon of inheritance has been implicitly utilized in breeding of organisms and selection for desired traits, and the scientific field of genetics seeks to understand the mechanisms of inheritance.</p>
+
<p><strong>Genetics</strong> (from the Greek <em>genno</em> <strong>&gamma;&epsilon;&nu;&nu;ώ</strong> = give birth) is the science of genes, heredity, evolution, and the variation of organisms. The phenomenon of inheritance has been implicitly utilized in breeding of organisms and selection for desired traits, and the scientific field of genetics seeks to understand the mechanisms of inheritance.</p>
<p>The genetic information of organisms is contained within the chemical structure of DNA (deoxyribonucleic acid) molecules. Individually inherited traits, corresponding to regions in the DNA sequence, are called genes. Genes encode the information necessary for synthesizing proteins -- complex molecules generally responsible for enzymatic reactions, synthesis, communication and structure within a cell. DNA sequence is transcribed into an intermediate molecule called &quot;messenger RNA&quot;, and ribosomes translate this sequence to form a chain of amino acids to form a protein. This process is known as the central dogma of molecular biology.</p>
+
<p>The genetic information of organisms is contained within the chemical structure of [[DNA]] (deoxyribonucleic acid) molecules. Individually inherited traits, corresponding to regions in the DNA sequence, are called genes. Genes encode the information necessary for synthesizing RNA and proteins -- complex molecules generally responsible for enzymatic reactions, synthesis, communication and structure within a cell. DNA sequence is transcribed into an intermediate molecule called &quot;messenger RNA&quot;, and ribosomes translate this sequence to form a chain of amino acids to form a protein. This process is known as the central dogma of molecular biology.</p>
 
<p>Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment that determines the ultimate outcome. Thus, while identical twins have the same DNA and genes, differences in their experiences during development and childhood results in different personalities and fingerprints. </p>
 
<p>Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment that determines the ultimate outcome. Thus, while identical twins have the same DNA and genes, differences in their experiences during development and childhood results in different personalities and fingerprints. </p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 
<h2><span class="mw-headline">History</span></h2>
 
<h2><span class="mw-headline">History</span></h2>
 
<dl><dd>
 
<dl><dd>
<div class="noprint"><em>Main article: <a title="History of genetics" href="http://en.wikipedia.org/wiki/History_of_genetics">History of genetics</a></em></div>
+
<div class="noprint"><em>Main article: <a href="http://en.wikipedia.org/wiki/History_of_genetics" title="History of genetics">History of genetics</a></em></div>
 
</dd></dl>
 
</dd></dl>
 
<div class="thumb tright">
 
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 202px"><a class="internal" title="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><img class="thumbimage" height="183" alt="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." width="200" longdesc="/wiki/Image:Sexlinked_inheritance_white.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Sexlinked_inheritance_white.jpg/200px-Sexlinked_inheritance_white.jpg" /></a>
+
<div style="width: 202px;" class="thumbinner"><a href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg" title="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." class="internal"><img width="200" height="183" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Sexlinked_inheritance_white.jpg/200px-Sexlinked_inheritance_white.jpg" longdesc="/wiki/Image:Sexlinked_inheritance_white.jpg" alt="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." class="thumbimage" /></a>
 
<div class="thumbcaption">
 
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>
+
<div style="float: right;" class="magnify"><a href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg" title="Enlarge" class="internal"><img width="15" height="11" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" alt="" /></a></div>
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in <a title="Drosophila" href="http://en.wikipedia.org/wiki/Drosophila">Drosophila</a> led him to the hypothesis that genes are located upon chromosomes.</div>
+
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in <a href="http://en.wikipedia.org/wiki/Drosophila" title="Drosophila">Drosophila</a> led him to the hypothesis that genes are located upon chromosomes.</div>
 
</div>
 
</div>
 
</div>
 
</div>
<p><a title="Gregor Johann Mendel" href="http://en.wikipedia.org/wiki/Gregor_Johann_Mendel">Gregor Johann Mendel</a>, a German-Czech <a title="Augustinian" href="http://en.wikipedia.org/wiki/Augustinian">Augustinian</a> monk and scientist, is often called the &quot;father of modern genetics&quot;, a title given to him due to his early work on the heredity of plants. In his paper &quot;Versuche &uuml;ber Pflanzenhybriden&quot; (&quot;<a title="Experiments on Plant Hybridization" href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization">Experiments on Plant Hybridization</a>&quot;), presented in <a title="1865" href="http://en.wikipedia.org/wiki/1865">1865</a> to the Brunn Natural History Society, <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel">Gregor Mendel</a> traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.<sup class="reference" id="_ref-mendel_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel">[3]</a></sup> Although not all features show these patterns of <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance">Mendelian inheritance</a>, his work suggested the utility of the application of statistics to the study of inheritance.</p>
+
<p><a href="http://en.wikipedia.org/wiki/Gregor_Johann_Mendel" title="Gregor Johann Mendel">Gregor Johann Mendel</a>, a German-Czech <a href="http://en.wikipedia.org/wiki/Augustinian" title="Augustinian">Augustinian</a> monk and scientist, is often called the &quot;father of modern genetics&quot;, a title given to him due to his early work on the heredity of plants. In his paper &quot;Versuche &uuml;ber Pflanzenhybriden&quot; (&quot;<a href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization" title="Experiments on Plant Hybridization">Experiments on Plant Hybridization</a>&quot;), presented in <a href="http://en.wikipedia.org/wiki/1865" title="1865">1865</a> to the Brunn Natural History Society, <a href="http://en.wikipedia.org/wiki/Gregor_Mendel" title="Gregor Mendel">Gregor Mendel</a> traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.<sup id="_ref-mendel_0" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-mendel" title="">[3]</a></sup> Although not all features show these patterns of <a href="http://en.wikipedia.org/wiki/Mendelian_inheritance" title="Mendelian inheritance">Mendelian inheritance</a>, his work suggested the utility of the application of statistics to the study of inheritance.</p>
<p>The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word &quot;genetics&quot; itself was coined by William Bateson, a significant proponent of Mendel's work, in a letter to Adam Sedgwick, dated April 18, 1905.<sup class="reference" id="_ref-1">[4]</sup> Bateson promoted the term &quot;genetics&quot; publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.<sup class="reference" id="_ref-bateson_genetics_0">[5]</sup></p>
+
<p>The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word &quot;genetics&quot; itself was coined by William Bateson, a significant proponent of Mendel's work, in a letter to Adam Sedgwick, dated April 18, 1905.<sup id="_ref-1" class="reference">[4]</sup> Bateson promoted the term &quot;genetics&quot; publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.<sup id="_ref-bateson_genetics_0" class="reference">[5]</sup></p>
 
<p>In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 Thomas Hunt Morgan argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student Alfred Sturtevant used the phenomenon of genetic linkage and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.</p>
 
<p>In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 Thomas Hunt Morgan argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student Alfred Sturtevant used the phenomenon of genetic linkage and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.</p>
 
<div class="thumb tleft">
 
<div class="thumb tleft">
<div class="thumbinner" style="WIDTH: 302px"><a class="internal" title="The chemical structure of DNA." href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg"><img class="thumbimage" height="350" alt="The chemical structure of DNA." width="300" longdesc="/wiki/Image:DNA_chemical_structure.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/DNA_chemical_structure.svg/300px-DNA_chemical_structure.svg.png" /></a>
+
<div style="width: 302px;" class="thumbinner"><a href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg" title="The chemical structure of DNA." class="internal"><img width="300" height="350" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/DNA_chemical_structure.svg/300px-DNA_chemical_structure.svg.png" longdesc="/wiki/Image:DNA_chemical_structure.svg" alt="The chemical structure of DNA." class="thumbimage" /></a>
 
<div class="thumbcaption">
 
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>
+
<div style="float: right;" class="magnify"><a href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg" title="Enlarge" class="internal"><img width="15" height="11" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" alt="" /></a></div>
 
The chemical structure of DNA.</div>
 
The chemical structure of DNA.</div>
 
</div>
 
</div>
 
</div>
 
</div>
<p>Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith">Frederick Griffith</a> published his discovery of the phenomenon of <a title="Transformation (genetics)" href="http://en.wikipedia.org/wiki/Transformation_%28genetics%29">transformation</a> (see <a title="Griffith's experiment" href="http://en.wikipedia.org/wiki/Griffith%27s_experiment">Griffith's experiment</a>); sixteen years later, in 1944, <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery">Oswald Theodore Avery</a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod">Colin McLeod</a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty">Maclyn McCarty</a> used this phenomenon to isolate and identify the molecule responsible for transformation as DNA<sup class="reference" id="_ref-dna_transforming_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming">[6]</a></sup>. The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment">Hershey-Chase experiment</a> in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance.</p>
+
<p>Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, <a href="http://en.wikipedia.org/wiki/Frederick_Griffith" title="Frederick Griffith">Frederick Griffith</a> published his discovery of the phenomenon of <a href="http://en.wikipedia.org/wiki/Transformation_%28genetics%29" title="Transformation (genetics)">transformation</a> (see <a href="http://en.wikipedia.org/wiki/Griffith%27s_experiment" title="Griffith's experiment">Griffith's experiment</a>); sixteen years later, in 1944, <a href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery" title="Oswald Theodore Avery">Oswald Theodore Avery</a>, <a href="http://en.wikipedia.org/wiki/Colin_McLeod" title="Colin McLeod">Colin McLeod</a> and <a href="http://en.wikipedia.org/wiki/Maclyn_McCarty" title="Maclyn McCarty">Maclyn McCarty</a> used this phenomenon to isolate and identify the molecule responsible for transformation as DNA<sup id="_ref-dna_transforming_0" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming" title="">[6]</a></sup>. The <a href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment" title="Hershey-Chase experiment">Hershey-Chase experiment</a> in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance.</p>
<p><a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson">James D. Watson</a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick">Francis Crick</a> resolved the structure of DNA in 1953, using <a title="X-ray crystallography" href="http://en.wikipedia.org/wiki/X-ray_crystallography">X-ray crystallography</a> information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a &quot;complement&quot; on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: <em>&quot;It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.&quot;</em></p>
+
<p><a href="http://en.wikipedia.org/wiki/James_D._Watson" title="James D. Watson">James D. Watson</a> and <a href="http://en.wikipedia.org/wiki/Francis_Crick" title="Francis Crick">Francis Crick</a> resolved the structure of DNA in 1953, using <a href="http://en.wikipedia.org/wiki/X-ray_crystallography" title="X-ray crystallography">X-ray crystallography</a> information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a &quot;complement&quot; on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: <em>&quot;It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.&quot;</em></p>
<p>In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of <a title="DNA sequencing" href="http://en.wikipedia.org/wiki/DNA_sequencing">DNA sequencing</a> in 1977 enabled the determination of nucleotide sequences on DNA,<sup class="reference" id="_ref-sanger_sequencing_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing">[7]</a></sup> and the <a title="PCR" href="http://en.wikipedia.org/wiki/PCR">PCR</a> method developed by <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis">Kary Banks Mullis</a> in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> and parallel private effort by <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics">Celera Genomics</a>, culminated in the sequencing of the human <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> in 2001.</p>
+
<p>In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of <a href="http://en.wikipedia.org/wiki/DNA_sequencing" title="DNA sequencing">DNA sequencing</a> in 1977 enabled the determination of nucleotide sequences on DNA,<sup id="_ref-sanger_sequencing_0" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing" title="">[7]</a></sup> and the <a href="http://en.wikipedia.org/wiki/PCR" title="PCR">PCR</a> method developed by <a href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis" title="Kary Banks Mullis">Kary Banks Mullis</a> in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the <a href="http://en.wikipedia.org/wiki/Human_Genome_Project" title="Human Genome Project">Human Genome Project</a> and parallel private effort by <a href="http://en.wikipedia.org/wiki/Celera_Genomics" title="Celera Genomics">Celera Genomics</a>, culminated in the sequencing of the human <a href="http://en.wikipedia.org/wiki/Genome" title="Genome">genome</a> in 2001.</p>
<p><a id="Timeline_of_notable_discoveries" name="Timeline_of_notable_discoveries"></a></p>
+
<p><a name="Timeline_of_notable_discoveries" id="Timeline_of_notable_discoveries"></a></p>
 
<h3><span class="mw-headline">Timeline of notable discoveries</span></h3>
 
<h3><span class="mw-headline">Timeline of notable discoveries</span></h3>
 
<ul>
 
<ul>
     <li><a title="1865" href="http://en.wikipedia.org/wiki/1865">1865</a> <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel">Gregor Mendel</a>'s paper, <em><a title="Experiments on Plant Hybridization" href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization">Experiments on Plant Hybridization</a></em><sup class="reference" id="_ref-mendel_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel">[3]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1865" title="1865">1865</a> <a href="http://en.wikipedia.org/wiki/Gregor_Mendel" title="Gregor Mendel">Gregor Mendel</a>'s paper, <em><a href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization" title="Experiments on Plant Hybridization">Experiments on Plant Hybridization</a></em><sup id="_ref-mendel_1" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-mendel" title="">[3]</a></sup> </li>
     <li><a title="1869" href="http://en.wikipedia.org/wiki/1869">1869</a> <a title="Friedrich Miescher" href="http://en.wikipedia.org/wiki/Friedrich_Miescher">Friedrich Miescher</a> discovers a weak acid in the nuclei of <a title="Leukocyte" href="http://en.wikipedia.org/wiki/Leukocyte">white blood cells</a> that today we call <a title="DNA" href="http://en.wikipedia.org/wiki/DNA">DNA</a><sup class="reference" id="_ref-Hartl_and_Jones_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-Hartl_and_Jones">[1]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1869" title="1869">1869</a> <a href="http://en.wikipedia.org/wiki/Friedrich_Miescher" title="Friedrich Miescher">Friedrich Miescher</a> discovers a weak acid in the nuclei of <a href="http://en.wikipedia.org/wiki/Leukocyte" title="Leukocyte">white blood cells</a> that today we call <a href="http://en.wikipedia.org/wiki/DNA" title="DNA">DNA</a><sup id="_ref-Hartl_and_Jones_1" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-Hartl_and_Jones" title="">[1]</a></sup> </li>
     <li><a title="1880" href="http://en.wikipedia.org/wiki/1880">1880</a>-<a title="1890" href="http://en.wikipedia.org/wiki/1890">1890</a> <a title="Walther Flemming" href="http://en.wikipedia.org/wiki/Walther_Flemming">Walther Flemming</a>, <a title="Eduard Strasburger" href="http://en.wikipedia.org/wiki/Eduard_Strasburger">Eduard Strasburger</a>, and <a title="Edouard van Beneden" href="http://en.wikipedia.org/wiki/Edouard_van_Beneden">Edouard van Beneden</a> elucidate chromosome distribution during cell division </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1880" title="1880">1880</a>-<a href="http://en.wikipedia.org/wiki/1890" title="1890">1890</a> <a href="http://en.wikipedia.org/wiki/Walther_Flemming" title="Walther Flemming">Walther Flemming</a>, <a href="http://en.wikipedia.org/wiki/Eduard_Strasburger" title="Eduard Strasburger">Eduard Strasburger</a>, and <a href="http://en.wikipedia.org/wiki/Edouard_van_Beneden" title="Edouard van Beneden">Edouard van Beneden</a> elucidate chromosome distribution during cell division </li>
     <li><a title="1903" href="http://en.wikipedia.org/wiki/1903">1903</a> <a title="Walter Sutton" href="http://en.wikipedia.org/wiki/Walter_Sutton">Walter Sutton</a> hypothesizes that chromosomes, which segregate in a Mendelian fashion, are hereditary units<sup class="reference" id="_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity">[8]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1903" title="1903">1903</a> <a href="http://en.wikipedia.org/wiki/Walter_Sutton" title="Walter Sutton">Walter Sutton</a> hypothesizes that chromosomes, which segregate in a Mendelian fashion, are hereditary units<sup id="_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity" title="">[8]</a></sup> </li>
     <li><a title="1906" href="http://en.wikipedia.org/wiki/1906">1906</a> The term &quot;genetics&quot; is proposed by the British biologist <a title="William Bateson" href="http://en.wikipedia.org/wiki/William_Bateson">William Bateson</a><sup class="reference" id="_ref-bateson_genetics_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-bateson_genetics">[5]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1906" title="1906">1906</a> The term &quot;genetics&quot; is proposed by the British biologist <a href="http://en.wikipedia.org/wiki/William_Bateson" title="William Bateson">William Bateson</a><sup id="_ref-bateson_genetics_1" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-bateson_genetics" title="">[5]</a></sup> </li>
     <li><a title="1910" href="http://en.wikipedia.org/wiki/1910">1910</a> <a title="Thomas Hunt Morgan" href="http://en.wikipedia.org/wiki/Thomas_Hunt_Morgan">Thomas Hunt Morgan</a> shows that genes reside on chromosomes, and discovered linked genes on chromosomes that do not follow Mendel's law of independent allele segregation </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1910" title="1910">1910</a> <a href="http://en.wikipedia.org/wiki/Thomas_Hunt_Morgan" title="Thomas Hunt Morgan">Thomas Hunt Morgan</a> shows that genes reside on chromosomes, and discovered linked genes on chromosomes that do not follow Mendel's law of independent allele segregation </li>
     <li><a title="1913" href="http://en.wikipedia.org/wiki/1913">1913</a> <a title="Alfred Sturtevant" href="http://en.wikipedia.org/wiki/Alfred_Sturtevant">Alfred Sturtevant</a> makes the first <a title="Genetic map" href="http://en.wikipedia.org/wiki/Genetic_map">genetic map</a> of a chromosome, showing genes are linearly arranged </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1913" title="1913">1913</a> <a href="http://en.wikipedia.org/wiki/Alfred_Sturtevant" title="Alfred Sturtevant">Alfred Sturtevant</a> makes the first <a href="http://en.wikipedia.org/wiki/Genetic_map" title="Genetic map">genetic map</a> of a chromosome, showing genes are linearly arranged </li>
     <li><a title="1918" href="http://en.wikipedia.org/wiki/1918">1918</a> <a title="Ronald Fisher" href="http://en.wikipedia.org/wiki/Ronald_Fisher">Ronald Fisher</a> publishes &quot;<a title="The Correlation Between Relatives on the Supposition of Mendelian Inheritance" href="http://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance">The Correlation Between Relatives on the Supposition of Mendelian Inheritance</a>&quot; the <a title="Modern synthesis" href="http://en.wikipedia.org/wiki/Modern_synthesis">modern synthesis</a> starts. </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1918" title="1918">1918</a> <a href="http://en.wikipedia.org/wiki/Ronald_Fisher" title="Ronald Fisher">Ronald Fisher</a> publishes &quot;<a href="http://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance" title="The Correlation Between Relatives on the Supposition of Mendelian Inheritance">The Correlation Between Relatives on the Supposition of Mendelian Inheritance</a>&quot; the <a href="http://en.wikipedia.org/wiki/Modern_synthesis" title="Modern synthesis">modern synthesis</a> starts. </li>
     <li><a title="1928" href="http://en.wikipedia.org/wiki/1928">1928</a> <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith">Frederick Griffith</a> discovers a hereditary molecule that is transmissible between bacteria (see <a title="Griffiths experiment" href="http://en.wikipedia.org/wiki/Griffiths_experiment">Griffiths experiment</a>) </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1928" title="1928">1928</a> <a href="http://en.wikipedia.org/wiki/Frederick_Griffith" title="Frederick Griffith">Frederick Griffith</a> discovers a hereditary molecule that is transmissible between bacteria (see <a href="http://en.wikipedia.org/wiki/Griffiths_experiment" title="Griffiths experiment">Griffiths experiment</a>) </li>
     <li><a title="1931" href="http://en.wikipedia.org/wiki/1931">1931</a> <a title="Crossing over" href="http://en.wikipedia.org/wiki/Crossing_over">Crossing over</a> is the cause of <a title="Recombination" href="http://en.wikipedia.org/wiki/Recombination">recombination</a> (see <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock">Barbara McClintock</a> and <a title="Cytogenetics" href="http://en.wikipedia.org/wiki/Cytogenetics">cytogenetics</a>) </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1931" title="1931">1931</a> <a href="http://en.wikipedia.org/wiki/Crossing_over" title="Crossing over">Crossing over</a> is the cause of <a href="http://en.wikipedia.org/wiki/Recombination" title="Recombination">recombination</a> (see <a href="http://en.wikipedia.org/wiki/Barbara_McClintock" title="Barbara McClintock">Barbara McClintock</a> and <a href="http://en.wikipedia.org/wiki/Cytogenetics" title="Cytogenetics">cytogenetics</a>) </li>
     <li><a title="1941" href="http://en.wikipedia.org/wiki/1941">1941</a> <a title="Edward Lawrie Tatum" href="http://en.wikipedia.org/wiki/Edward_Lawrie_Tatum">Edward Lawrie Tatum</a> and <a title="George Wells Beadle" href="http://en.wikipedia.org/wiki/George_Wells_Beadle">George Wells Beadle</a> show that genes code for <a title="Protein" href="http://en.wikipedia.org/wiki/Protein">proteins</a><sup class="reference" id="_ref-2"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-2">[9]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1941" title="1941">1941</a> <a href="http://en.wikipedia.org/wiki/Edward_Lawrie_Tatum" title="Edward Lawrie Tatum">Edward Lawrie Tatum</a> and <a href="http://en.wikipedia.org/wiki/George_Wells_Beadle" title="George Wells Beadle">George Wells Beadle</a> show that genes code for <a href="http://en.wikipedia.org/wiki/Protein" title="Protein">proteins</a><sup id="_ref-2" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-2" title="">[9]</a></sup> </li>
     <li><a title="1944" href="http://en.wikipedia.org/wiki/1944">1944</a> <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery">Oswald Theodore Avery</a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod">Colin McLeod</a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty">Maclyn McCarty</a> isolate <a title="DNA" href="http://en.wikipedia.org/wiki/DNA">DNA</a> as the genetic material (at that time called <a title="Transforming principle" href="http://en.wikipedia.org/wiki/Transforming_principle">transforming principle</a>)<sup class="reference" id="_ref-dna_transforming_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming">[6]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1944" title="1944">1944</a> <a href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery" title="Oswald Theodore Avery">Oswald Theodore Avery</a>, <a href="http://en.wikipedia.org/wiki/Colin_McLeod" title="Colin McLeod">Colin McLeod</a> and <a href="http://en.wikipedia.org/wiki/Maclyn_McCarty" title="Maclyn McCarty">Maclyn McCarty</a> isolate <a href="http://en.wikipedia.org/wiki/DNA" title="DNA">DNA</a> as the genetic material (at that time called <a href="http://en.wikipedia.org/wiki/Transforming_principle" title="Transforming principle">transforming principle</a>)<sup id="_ref-dna_transforming_1" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming" title="">[6]</a></sup> </li>
     <li><a title="1950" href="http://en.wikipedia.org/wiki/1950">1950</a> <a title="Erwin Chargaff" href="http://en.wikipedia.org/wiki/Erwin_Chargaff">Erwin Chargaff</a> shows that the four nucleotides are not present in nucleic acids in stable proportions, but that some general rules appear to hold (e.g., the nucleotide bases Adenine-Thymine and Cytosine-Guanine always remain in equal proportions). </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1950" title="1950">1950</a> <a href="http://en.wikipedia.org/wiki/Erwin_Chargaff" title="Erwin Chargaff">Erwin Chargaff</a> shows that the four nucleotides are not present in nucleic acids in stable proportions, but that some general rules appear to hold (e.g., the nucleotide bases Adenine-Thymine and Cytosine-Guanine always remain in equal proportions). </li>
     <li><a title="1950" href="http://en.wikipedia.org/wiki/1950">1950</a> <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock">Barbara McClintock</a> discovers <a title="Transposon" href="http://en.wikipedia.org/wiki/Transposon">transposons</a> in <a title="Maize" href="http://en.wikipedia.org/wiki/Maize">maize</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1950" title="1950">1950</a> <a href="http://en.wikipedia.org/wiki/Barbara_McClintock" title="Barbara McClintock">Barbara McClintock</a> discovers <a href="http://en.wikipedia.org/wiki/Transposon" title="Transposon">transposons</a> in <a href="http://en.wikipedia.org/wiki/Maize" title="Maize">maize</a> </li>
     <li><a title="1952" href="http://en.wikipedia.org/wiki/1952">1952</a> The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment">Hershey-Chase experiment</a> proves the genetic information of <a title="Phage" href="http://en.wikipedia.org/wiki/Phage">phages</a> (and all other organisms) to be DNA </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1952" title="1952">1952</a> The <a href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment" title="Hershey-Chase experiment">Hershey-Chase experiment</a> proves the genetic information of <a href="http://en.wikipedia.org/wiki/Phage" title="Phage">phages</a> (and all other organisms) to be DNA </li>
     <li><a title="1953" href="http://en.wikipedia.org/wiki/1953">1953</a> DNA structure is resolved to be a <a title="Double helix" href="http://en.wikipedia.org/wiki/Double_helix">double helix</a> by <a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson">James D. Watson</a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick">Francis Crick</a>, with the help of <a title="Rosalind Franklin" href="http://en.wikipedia.org/wiki/Rosalind_Franklin">Rosalind Franklin</a><sup class="reference" id="_ref-3"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-3">[10]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1953" title="1953">1953</a> DNA structure is resolved to be a <a href="http://en.wikipedia.org/wiki/Double_helix" title="Double helix">double helix</a> by <a href="http://en.wikipedia.org/wiki/James_D._Watson" title="James D. Watson">James D. Watson</a> and <a href="http://en.wikipedia.org/wiki/Francis_Crick" title="Francis Crick">Francis Crick</a>, with the help of <a href="http://en.wikipedia.org/wiki/Rosalind_Franklin" title="Rosalind Franklin">Rosalind Franklin</a><sup id="_ref-3" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-3" title="">[10]</a></sup> </li>
     <li><a title="1956" href="http://en.wikipedia.org/wiki/1956">1956</a> <a title="Joe Hin Tjio" href="http://en.wikipedia.org/wiki/Joe_Hin_Tjio">Joe Hin Tjio</a> and <a title="Albert Levan" href="http://en.wikipedia.org/wiki/Albert_Levan">Albert Levan</a> established the correct chromosome number in humans to be 46 </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1956" title="1956">1956</a> <a href="http://en.wikipedia.org/wiki/Joe_Hin_Tjio" title="Joe Hin Tjio">Joe Hin Tjio</a> and <a href="http://en.wikipedia.org/wiki/Albert_Levan" title="Albert Levan">Albert Levan</a> established the correct chromosome number in humans to be 46 </li>
     <li><a title="1958" href="http://en.wikipedia.org/wiki/1958">1958</a> The <a title="Meselson-Stahl experiment" href="http://en.wikipedia.org/wiki/Meselson-Stahl_experiment">Meselson-Stahl experiment</a> demonstrates that DNA is <a title="Semiconservative replication" href="http://en.wikipedia.org/wiki/Semiconservative_replication">semiconservatively replicated</a><sup class="reference" id="_ref-4"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-4">[11]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1958" title="1958">1958</a> The <a href="http://en.wikipedia.org/wiki/Meselson-Stahl_experiment" title="Meselson-Stahl experiment">Meselson-Stahl experiment</a> demonstrates that DNA is <a href="http://en.wikipedia.org/wiki/Semiconservative_replication" title="Semiconservative replication">semiconservatively replicated</a><sup id="_ref-4" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-4" title="">[11]</a></sup> </li>
     <li><a title="1961" href="http://en.wikipedia.org/wiki/1961">1961</a> The <a title="Genetic code" href="http://en.wikipedia.org/wiki/Genetic_code">genetic code</a> is arranged in triplets </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1961" title="1961">1961</a> The <a href="http://en.wikipedia.org/wiki/Genetic_code" title="Genetic code">genetic code</a> is arranged in triplets </li>
     <li><a title="1964" href="http://en.wikipedia.org/wiki/1964">1964</a> <a title="Howard Temin" href="http://en.wikipedia.org/wiki/Howard_Temin">Howard Temin</a> showed using <a title="RNA virus" href="http://en.wikipedia.org/wiki/RNA_virus">RNA viruses</a> that Watson's <a title="Central dogma" href="http://en.wikipedia.org/wiki/Central_dogma">central dogma</a> is not always true </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1964" title="1964">1964</a> <a href="http://en.wikipedia.org/wiki/Howard_Temin" title="Howard Temin">Howard Temin</a> showed using <a href="http://en.wikipedia.org/wiki/RNA_virus" title="RNA virus">RNA viruses</a> that Watson's <a href="http://en.wikipedia.org/wiki/Central_dogma" title="Central dogma">central dogma</a> is not always true </li>
     <li><a title="1970" href="http://en.wikipedia.org/wiki/1970">1970</a> <a title="Restriction enzymes" href="http://en.wikipedia.org/wiki/Restriction_enzymes">Restriction enzymes</a> were discovered in studies of a bacterium, <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em>, enabling scientists to cut and paste DNA </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1970" title="1970">1970</a> <a href="http://en.wikipedia.org/wiki/Restriction_enzymes" title="Restriction enzymes">Restriction enzymes</a> were discovered in studies of a bacterium, <em><a href="http://en.wikipedia.org/wiki/Haemophilus_influenzae" title="Haemophilus influenzae">Haemophilus influenzae</a></em>, enabling scientists to cut and paste DNA </li>
     <li><a title="1972" href="http://en.wikipedia.org/wiki/1972">1972</a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> and his team at the Laboratory of Molecular Biology of the <a title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent">University of Ghent</a> (<a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent">Ghent</a>, <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium">Belgium</a>) were the first to determine the sequence of a gene: the gene for <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2">Bacteriophage MS2</a> coat protein<sup class="reference" id="_ref-5"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-5">[12]</a></sup>. </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1972" title="1972">1972</a>, <a href="http://en.wikipedia.org/wiki/Walter_Fiers" title="Walter Fiers">Walter Fiers</a> and his team at the Laboratory of Molecular Biology of the <a href="http://en.wikipedia.org/wiki/University_of_Ghent" title="University of Ghent">University of Ghent</a> (<a href="http://en.wikipedia.org/wiki/Ghent" title="Ghent">Ghent</a>, <a href="http://en.wikipedia.org/wiki/Belgium" title="Belgium">Belgium</a>) were the first to determine the sequence of a gene: the gene for <a href="http://en.wikipedia.org/wiki/Bacteriophage_MS2" title="Bacteriophage MS2">Bacteriophage MS2</a> coat protein<sup id="_ref-5" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-5" title="">[12]</a></sup>. </li>
     <li><a title="1976" href="http://en.wikipedia.org/wiki/1976">1976</a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> and his team determine the complete nucleotide-sequence of <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2">Bacteriophage MS2</a>-RNA<sup class="reference" id="_ref-6"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-6">[13]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1976" title="1976">1976</a>, <a href="http://en.wikipedia.org/wiki/Walter_Fiers" title="Walter Fiers">Walter Fiers</a> and his team determine the complete nucleotide-sequence of <a href="http://en.wikipedia.org/wiki/Bacteriophage_MS2" title="Bacteriophage MS2">Bacteriophage MS2</a>-RNA<sup id="_ref-6" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-6" title="">[13]</a></sup> </li>
     <li><a title="1977" href="http://en.wikipedia.org/wiki/1977">1977</a> DNA is <a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing">sequenced</a> for the first time by <a title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger">Fred Sanger</a>, <a title="Walter Gilbert" href="http://en.wikipedia.org/wiki/Walter_Gilbert">Walter Gilbert</a>, and <a title="Allan Maxam" href="http://en.wikipedia.org/wiki/Allan_Maxam">Allan Maxam</a> working independently. Sanger's lab complete the entire genome of sequence of <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">Bacteriophage</a> <a title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage">&Phi;-X174</a><sup class="reference" id="_ref-sanger_sequencing_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing">[7]</a></sup>. </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1977" title="1977">1977</a> DNA is <a href="http://en.wikipedia.org/wiki/Sequencing" title="Sequencing">sequenced</a> for the first time by <a href="http://en.wikipedia.org/wiki/Fred_Sanger" title="Fred Sanger">Fred Sanger</a>, <a href="http://en.wikipedia.org/wiki/Walter_Gilbert" title="Walter Gilbert">Walter Gilbert</a>, and <a href="http://en.wikipedia.org/wiki/Allan_Maxam" title="Allan Maxam">Allan Maxam</a> working independently. Sanger's lab complete the entire genome of sequence of <a href="http://en.wikipedia.org/wiki/Bacteriophage" title="Bacteriophage">Bacteriophage</a> <a href="http://en.wikipedia.org/wiki/Phi-X174_phage" title="Phi-X174 phage">&Phi;-X174</a><sup id="_ref-sanger_sequencing_1" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing" title="">[7]</a></sup>. </li>
     <li><a title="1983" href="http://en.wikipedia.org/wiki/1983">1983</a> <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis">Kary Banks Mullis</a> discovers the <a title="Polymerase chain reaction" href="http://en.wikipedia.org/wiki/Polymerase_chain_reaction">polymerase chain reaction</a> enabling the easy amplification of DNA </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1983" title="1983">1983</a> <a href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis" title="Kary Banks Mullis">Kary Banks Mullis</a> discovers the <a href="http://en.wikipedia.org/wiki/Polymerase_chain_reaction" title="Polymerase chain reaction">polymerase chain reaction</a> enabling the easy amplification of DNA </li>
     <li><a title="1985" href="http://en.wikipedia.org/wiki/1985">1985</a> <a title="Alec Jeffreys" href="http://en.wikipedia.org/wiki/Alec_Jeffreys">Alec Jeffreys</a> discovers genetic finger printing. </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1985" title="1985">1985</a> <a href="http://en.wikipedia.org/wiki/Alec_Jeffreys" title="Alec Jeffreys">Alec Jeffreys</a> discovers genetic finger printing. </li>
     <li><a title="1989" href="http://en.wikipedia.org/wiki/1989">1989</a> The first human gene is sequenced by <a title="Francis Collins" href="http://en.wikipedia.org/wiki/Francis_Collins">Francis Collins</a> and <a title="Lap-Chee Tsui" href="http://en.wikipedia.org/wiki/Lap-Chee_Tsui">Lap-Chee Tsui</a>. It encodes the <a title="CFTR" href="http://en.wikipedia.org/wiki/CFTR">CFTR</a> protein. Defects in this gene cause <a title="Cystic fibrosis" href="http://en.wikipedia.org/wiki/Cystic_fibrosis">cystic fibrosis</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1989" title="1989">1989</a> The first human gene is sequenced by <a href="http://en.wikipedia.org/wiki/Francis_Collins" title="Francis Collins">Francis Collins</a> and <a href="http://en.wikipedia.org/wiki/Lap-Chee_Tsui" title="Lap-Chee Tsui">Lap-Chee Tsui</a>. It encodes the <a href="http://en.wikipedia.org/wiki/CFTR" title="CFTR">CFTR</a> protein. Defects in this gene cause <a href="http://en.wikipedia.org/wiki/Cystic_fibrosis" title="Cystic fibrosis">cystic fibrosis</a> </li>
     <li><a title="1995" href="http://en.wikipedia.org/wiki/1995">1995</a> The genome of <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em> is the first genome of a free living organism to be sequenced. </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1995" title="1995">1995</a> The genome of <em><a href="http://en.wikipedia.org/wiki/Haemophilus_influenzae" title="Haemophilus influenzae">Haemophilus influenzae</a></em> is the first genome of a free living organism to be sequenced. </li>
     <li><a title="1996" href="http://en.wikipedia.org/wiki/1996">1996</a> Saccharomyces cerevisiae is the first <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote">eukaryote</a> genome sequence to be released </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1996" title="1996">1996</a> Saccharomyces cerevisiae is the first <a href="http://en.wikipedia.org/wiki/Eukaryote" title="Eukaryote">eukaryote</a> genome sequence to be released </li>
     <li><a title="1998" href="http://en.wikipedia.org/wiki/1998">1998</a> The first genome sequence for a multicellular eukaryote, <em><a title="C. elegans" href="http://en.wikipedia.org/wiki/C._elegans">C. elegans</a></em> is released. </li>
+
     <li><a href="http://en.wikipedia.org/wiki/1998" title="1998">1998</a> The first genome sequence for a multicellular eukaryote, <em><a href="http://en.wikipedia.org/wiki/C._elegans" title="C. elegans">C. elegans</a></em> is released. </li>
     <li><a title="2001" href="http://en.wikipedia.org/wiki/2001">2001</a> First draft sequences of the human genome are released simultaneously by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> and <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics">Celera Genomics</a>. </li>
+
     <li><a href="http://en.wikipedia.org/wiki/2001" title="2001">2001</a> First draft sequences of the human genome are released simultaneously by the <a href="http://en.wikipedia.org/wiki/Human_Genome_Project" title="Human Genome Project">Human Genome Project</a> and <a href="http://en.wikipedia.org/wiki/Celera_Genomics" title="Celera Genomics">Celera Genomics</a>. </li>
     <li><a title="2003" href="http://en.wikipedia.org/wiki/2003">2003</a> (<a title="April 14" href="http://en.wikipedia.org/wiki/April_14">14 April</a>) Successful completion of <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> with 98% of the genome sequenced to a 99.99% <a title="Accuracy" href="http://en.wikipedia.org/wiki/Accuracy">accuracy</a>.<sup class="reference" id="_ref-7"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-7">[14]</a></sup> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/2003" title="2003">2003</a> (<a href="http://en.wikipedia.org/wiki/April_14" title="April 14">14 April</a>) Successful completion of <a href="http://en.wikipedia.org/wiki/Human_Genome_Project" title="Human Genome Project">Human Genome Project</a> with 98% of the genome sequenced to a 99.99% <a href="http://en.wikipedia.org/wiki/Accuracy" title="Accuracy">accuracy</a>.<sup id="_ref-7" class="reference"><a href="http://en.wikipedia.org/wiki/Genetics#_note-7" title="">[14]</a></sup> </li>
 
</ul>
 
</ul>
<p><a id="Areas_of_genetics" name="Areas_of_genetics"></a></p>
+
<p><a name="Areas_of_genetics" id="Areas_of_genetics"></a></p>
 
<h2><span class="mw-headline">Areas of genetics</span></h2>
 
<h2><span class="mw-headline">Areas of genetics</span></h2>
<p><a id="Classical_genetics" name="Classical_genetics"></a></p>
+
<p><a name="Classical_genetics" id="Classical_genetics"></a></p>
 
<h3><span class="mw-headline">Classical genetics</span></h3>
 
<h3><span class="mw-headline">Classical genetics</span></h3>
<dl><dd><em>Main articles:</em> <a title="Classical genetics" href="http://en.wikipedia.org/wiki/Classical_genetics">Classical genetics</a>, <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance">Mendelian inheritance</a> </dd></dl>
+
<dl><dd><em>Main articles:</em> <a href="http://en.wikipedia.org/wiki/Classical_genetics" title="Classical genetics">Classical genetics</a>, <a href="http://en.wikipedia.org/wiki/Mendelian_inheritance" title="Mendelian inheritance">Mendelian inheritance</a> </dd></dl>
<p>Classical genetics consists of the techniques and methodologies of genetics that predate the advent of <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. After the discovery of the genetic code and such tools of <a title="Clone (genetics)" href="http://en.wikipedia.org/wiki/Clone_%28genetics%29">cloning</a> as <a title="Restriction enzyme" href="http://en.wikipedia.org/wiki/Restriction_enzyme">restriction enzymes</a>, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance">Mendel's laws</a> and <a title="Muller's morphs" href="http://en.wikipedia.org/wiki/Muller%27s_morphs">Muller's morphs</a>. Patterns of inheritance still remain a useful tool for the study of <a title="Genetic disease" href="http://en.wikipedia.org/wiki/Genetic_disease">genetic diseases</a>.</p>
+
<p>Classical genetics consists of the techniques and methodologies of genetics that predate the advent of <a href="http://en.wikipedia.org/wiki/Molecular_biology" title="Molecular biology">molecular biology</a>. After the discovery of the genetic code and such tools of <a href="http://en.wikipedia.org/wiki/Clone_%28genetics%29" title="Clone (genetics)">cloning</a> as <a href="http://en.wikipedia.org/wiki/Restriction_enzyme" title="Restriction enzyme">restriction enzymes</a>, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as <a href="http://en.wikipedia.org/wiki/Mendelian_inheritance" title="Mendelian inheritance">Mendel's laws</a> and <a href="http://en.wikipedia.org/wiki/Muller%27s_morphs" title="Muller's morphs">Muller's morphs</a>. Patterns of inheritance still remain a useful tool for the study of <a href="http://en.wikipedia.org/wiki/Genetic_disease" title="Genetic disease">genetic diseases</a>.</p>
<p><a id="Behavioral_genetics" name="Behavioral_genetics"></a></p>
+
<p><a name="Behavioral_genetics" id="Behavioral_genetics"></a></p>
 
<h3><span class="mw-headline">Behavioral genetics</span></h3>
 
<h3><span class="mw-headline">Behavioral genetics</span></h3>
<dl><dd><em>Main article:</em> <a title="Behavioral genetics" href="http://en.wikipedia.org/wiki/Behavioral_genetics">Behavioral genetics</a> </dd></dl>
+
<dl><dd><em>Main article:</em> <a href="http://en.wikipedia.org/wiki/Behavioral_genetics" title="Behavioral genetics">Behavioral genetics</a> </dd></dl>
<p>Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection">natural selection</a>, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as <a title="Richard Dawkins" href="http://en.wikipedia.org/wiki/Richard_Dawkins">Richard Dawkins</a> and <a title="W. D. Hamilton" href="http://en.wikipedia.org/wiki/W._D._Hamilton">W. D. Hamilton</a> to propose explanations, including the theories of <a title="Kin selection" href="http://en.wikipedia.org/wiki/Kin_selection">kin selection</a> and <a title="Reciprocal altruism" href="http://en.wikipedia.org/wiki/Reciprocal_altruism">reciprocal altruism</a>. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.</p>
+
<p>Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of <a href="http://en.wikipedia.org/wiki/Natural_selection" title="Natural selection">natural selection</a>, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as <a href="http://en.wikipedia.org/wiki/Richard_Dawkins" title="Richard Dawkins">Richard Dawkins</a> and <a href="http://en.wikipedia.org/wiki/W._D._Hamilton" title="W. D. Hamilton">W. D. Hamilton</a> to propose explanations, including the theories of <a href="http://en.wikipedia.org/wiki/Kin_selection" title="Kin selection">kin selection</a> and <a href="http://en.wikipedia.org/wiki/Reciprocal_altruism" title="Reciprocal altruism">reciprocal altruism</a>. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.</p>
<p><a id="Clinical_genetics" name="Clinical_genetics"></a></p>
+
<p><a name="Clinical_genetics" id="Clinical_genetics"></a></p>
 
<h3><span class="mw-headline">Clinical genetics</span></h3>
 
<h3><span class="mw-headline">Clinical genetics</span></h3>
 
<dl><dd>
 
<dl><dd>
<div class="noprint"><em>Main article: <a title="Clinical genetics" href="http://en.wikipedia.org/wiki/Clinical_genetics">Clinical genetics</a></em></div>
+
<div class="noprint"><em>Main article: <a href="http://en.wikipedia.org/wiki/Clinical_genetics" title="Clinical genetics">Clinical genetics</a></em></div>
 
</dd></dl>
 
</dd></dl>
<p><a title="Physician" href="http://en.wikipedia.org/wiki/Physician">Physicians</a> who are trained as Geneticists diagnose, treat, and counsel patients with <a title="Genetic disorder" href="http://en.wikipedia.org/wiki/Genetic_disorder">genetic disorders</a> or <a title="Syndrome" href="http://en.wikipedia.org/wiki/Syndrome">syndromes</a>. These doctors are typically trained in a genetics <a title="Residency (medicine)" href="http://en.wikipedia.org/wiki/Residency_%28medicine%29">residency</a> and/or <a title="Fellowship" href="http://en.wikipedia.org/wiki/Fellowship">fellowship</a>.</p>
+
<p><a href="http://en.wikipedia.org/wiki/Physician" title="Physician">Physicians</a> who are trained as Geneticists diagnose, treat, and counsel patients with <a href="http://en.wikipedia.org/wiki/Genetic_disorder" title="Genetic disorder">genetic disorders</a> or <a href="http://en.wikipedia.org/wiki/Syndrome" title="Syndrome">syndromes</a>. These doctors are typically trained in a genetics <a href="http://en.wikipedia.org/wiki/Residency_%28medicine%29" title="Residency (medicine)">residency</a> and/or <a href="http://en.wikipedia.org/wiki/Fellowship" title="Fellowship">fellowship</a>.</p>
 
<p>Clinical genetics is also the study of genetic causes of clinical diseases.</p>
 
<p>Clinical genetics is also the study of genetic causes of clinical diseases.</p>
<p><a id="Molecular_genetics" name="Molecular_genetics"></a></p>
+
<p><a name="Molecular_genetics" id="Molecular_genetics"></a></p>
 
<h3><span class="mw-headline">Molecular genetics</span></h3>
 
<h3><span class="mw-headline">Molecular genetics</span></h3>
 
<dl><dd>
 
<dl><dd>
<div class="noprint"><em>Main article: <a title="Molecular genetics" href="http://en.wikipedia.org/wiki/Molecular_genetics">Molecular genetics</a></em></div>
+
<div class="noprint"><em>Main article: <a href="http://en.wikipedia.org/wiki/Molecular_genetics" title="Molecular genetics">Molecular genetics</a></em></div>
 
</dd></dl>
 
</dd></dl>
<p>Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule">molecular</a> level. Molecular genetics employs the methods of both classical genetics (such as <a title="Hybridization" href="http://en.wikipedia.org/wiki/Hybridization">hybridization</a>) and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. It is so-called to differentiate it from other sub fields of genetics such as <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics">ecological genetics</a> and <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics">population genetics</a>. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct <a title="Scientific classification" href="http://en.wikipedia.org/wiki/Scientific_classification">scientific classification</a> of organisms: this is called <a title="Molecular systematics" href="http://en.wikipedia.org/wiki/Molecular_systematics">molecular systematics</a>. The study of inherited features not strictly associated with changes in the <a title="DNA" href="http://en.wikipedia.org/wiki/DNA">DNA</a> sequence is called <a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics">epigenetics</a>.</p>
+
<p>Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a <a href="http://en.wikipedia.org/wiki/Molecule" title="Molecule">molecular</a> level. Molecular genetics employs the methods of both classical genetics (such as <a href="http://en.wikipedia.org/wiki/Hybridization" title="Hybridization">hybridization</a>) and <a href="http://en.wikipedia.org/wiki/Molecular_biology" title="Molecular biology">molecular biology</a>. It is so-called to differentiate it from other sub fields of genetics such as <a href="http://en.wikipedia.org/wiki/Ecological_genetics" title="Ecological genetics">ecological genetics</a> and <a href="http://en.wikipedia.org/wiki/Population_genetics" title="Population genetics">population genetics</a>. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct <a href="http://en.wikipedia.org/wiki/Scientific_classification" title="Scientific classification">scientific classification</a> of organisms: this is called <a href="http://en.wikipedia.org/wiki/Molecular_systematics" title="Molecular systematics">molecular systematics</a>. The study of inherited features not strictly associated with changes in the <a href="http://en.wikipedia.org/wiki/DNA" title="DNA">DNA</a> sequence is called <a href="http://en.wikipedia.org/wiki/Epigenetics" title="Epigenetics">epigenetics</a>.</p>
<p>Some take the view that <a title="Life" href="http://en.wikipedia.org/wiki/Life">life</a> can be defined, in <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule">molecular</a> terms, as the set of strategies which <a title="RNA" href="http://en.wikipedia.org/wiki/RNA">RNA</a> polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the <a title="Origin of life" href="http://en.wikipedia.org/wiki/Origin_of_life">origin of life</a>, specifically the <a title="RNA world hypothesis" href="http://en.wikipedia.org/wiki/RNA_world_hypothesis">RNA world hypothesis</a>.</p>
+
<p>Some take the view that <a href="http://en.wikipedia.org/wiki/Life" title="Life">life</a> can be defined, in <a href="http://en.wikipedia.org/wiki/Molecule" title="Molecule">molecular</a> terms, as the set of strategies which <a href="http://en.wikipedia.org/wiki/RNA" title="RNA">RNA</a> polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the <a href="http://en.wikipedia.org/wiki/Origin_of_life" title="Origin of life">origin of life</a>, specifically the <a href="http://en.wikipedia.org/wiki/RNA_world_hypothesis" title="RNA world hypothesis">RNA world hypothesis</a>.</p>
<p><a id="Population.2C_quantitative_and_ecological_genetics" name="Population.2C_quantitative_and_ecological_genetics"></a></p>
+
<p><a name="Population.2C_quantitative_and_ecological_genetics" id="Population.2C_quantitative_and_ecological_genetics"></a></p>
 
<h3><span class="mw-headline">Population, quantitative and ecological genetics</span></h3>
 
<h3><span class="mw-headline">Population, quantitative and ecological genetics</span></h3>
<dl><dd><em>Main articles:</em> <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics">Population genetics</a>, <a title="Quantitative genetics" href="http://en.wikipedia.org/wiki/Quantitative_genetics">Quantitative genetics</a>, <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics">Ecological genetics</a> </dd></dl>
+
<dl><dd><em>Main articles:</em> <a href="http://en.wikipedia.org/wiki/Population_genetics" title="Population genetics">Population genetics</a>, <a href="http://en.wikipedia.org/wiki/Quantitative_genetics" title="Quantitative genetics">Quantitative genetics</a>, <a href="http://en.wikipedia.org/wiki/Ecological_genetics" title="Ecological genetics">Ecological genetics</a> </dd></dl>
<p>Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying <a title="Population" href="http://en.wikipedia.org/wiki/Population">populations</a> of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in <a title="Allele frequency" href="http://en.wikipedia.org/wiki/Allele_frequency">allele frequencies</a> of genes under the influence of the four evolutionary forces: <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection">natural selection</a>, <a title="Genetic drift" href="http://en.wikipedia.org/wiki/Genetic_drift">genetic drift</a>, <a title="Mutation" href="http://en.wikipedia.org/wiki/Mutation">mutation</a> and <a title="Migration" href="http://en.wikipedia.org/wiki/Migration">migration</a>. It is the theory that attempts to explain such phenomena as <a title="Adaptation (biology)" href="http://en.wikipedia.org/wiki/Adaptation_%28biology%29">adaptation</a> and <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation">speciation</a>.</p>
+
<p>Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying <a href="http://en.wikipedia.org/wiki/Population" title="Population">populations</a> of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in <a href="http://en.wikipedia.org/wiki/Allele_frequency" title="Allele frequency">allele frequencies</a> of genes under the influence of the four evolutionary forces: <a href="http://en.wikipedia.org/wiki/Natural_selection" title="Natural selection">natural selection</a>, <a href="http://en.wikipedia.org/wiki/Genetic_drift" title="Genetic drift">genetic drift</a>, <a href="http://en.wikipedia.org/wiki/Mutation" title="Mutation">mutation</a> and <a href="http://en.wikipedia.org/wiki/Migration" title="Migration">migration</a>. It is the theory that attempts to explain such phenomena as <a href="http://en.wikipedia.org/wiki/Adaptation_%28biology%29" title="Adaptation (biology)">adaptation</a> and <a href="http://en.wikipedia.org/wiki/Speciation" title="Speciation">speciation</a>.</p>
<p>The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to <a title="Selection" href="http://en.wikipedia.org/wiki/Selection">selection</a> given data on the <a title="Phenotype" href="http://en.wikipedia.org/wiki/Phenotype">phenotype</a> and relationships of individuals. A more recent development of quantitative genetics is the analysis of <a title="Quantitative trait loci" href="http://en.wikipedia.org/wiki/Quantitative_trait_loci">quantitative trait loci</a>. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the <a title="Chromosome" href="http://en.wikipedia.org/wiki/Chromosome">chromosome</a> requires accurate phenotypic, pedigree and marker data from a large number of related individuals.</p>
+
<p>The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to <a href="http://en.wikipedia.org/wiki/Selection" title="Selection">selection</a> given data on the <a href="http://en.wikipedia.org/wiki/Phenotype" title="Phenotype">phenotype</a> and relationships of individuals. A more recent development of quantitative genetics is the analysis of <a href="http://en.wikipedia.org/wiki/Quantitative_trait_loci" title="Quantitative trait loci">quantitative trait loci</a>. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the <a href="http://en.wikipedia.org/wiki/Chromosome" title="Chromosome">chromosome</a> requires accurate phenotypic, pedigree and marker data from a large number of related individuals.</p>
<p>Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on <a title="Ecology" href="http://en.wikipedia.org/wiki/Ecology">ecological</a> issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.</p>
+
<p>Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on <a href="http://en.wikipedia.org/wiki/Ecology" title="Ecology">ecological</a> issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.</p>
<p>Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of <a title="Mendelian randomization" href="http://en.wikipedia.org/wiki/Mendelian_randomization">Mendelian randomization</a>.</p>
+
<p>Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of <a href="http://en.wikipedia.org/wiki/Mendelian_randomization" title="Mendelian randomization">Mendelian randomization</a>.</p>
<p><a id="Genomics" name="Genomics"></a></p>
+
<p><a name="Genomics" id="Genomics"></a></p>
 
<h3><span class="mw-headline">Genomics</span></h3>
 
<h3><span class="mw-headline">Genomics</span></h3>
 
<dl><dd>
 
<dl><dd>
<div class="noprint"><em>Main article: <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics">Genomics</a></em></div>
+
<div class="noprint"><em>Main article: <a href="http://en.wikipedia.org/wiki/Genomics" title="Genomics">Genomics</a></em></div>
 
</dd></dl>
 
</dd></dl>
<p>A more recent development is the rise of <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics">genomics</a>, which attempts the study of large-scale genetic patterns across the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and <a title="Sequence profiling tool" href="http://en.wikipedia.org/wiki/Sequence_profiling_tool">Sequence profiling tool</a> using <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a> approaches for analysis of large sets of data.</p>
+
<p>A more recent development is the rise of <a href="http://en.wikipedia.org/wiki/Genomics" title="Genomics">genomics</a>, which attempts the study of large-scale genetic patterns across the <a href="http://en.wikipedia.org/wiki/Genome" title="Genome">genome</a> for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and <a href="http://en.wikipedia.org/wiki/Sequence_profiling_tool" title="Sequence profiling tool">Sequence profiling tool</a> using <a href="http://en.wikipedia.org/wiki/Bioinformatics" title="Bioinformatics">bioinformatics</a> approaches for analysis of large sets of data.</p>
<p><a id="Closely-related_fields" name="Closely-related_fields"></a></p>
+
<p><a name="Closely-related_fields" id="Closely-related_fields"></a></p>
 
<h3><span class="mw-headline">Closely-related fields</span></h3>
 
<h3><span class="mw-headline">Closely-related fields</span></h3>
<p>The science which grew out of the union of <a title="Biochemistry" href="http://en.wikipedia.org/wiki/Biochemistry">biochemistry</a> and genetics is widely known as <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. The term &quot;genetics&quot; is often widely conflated with the notion of <a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering">genetic engineering</a>, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics">population genetics</a> and <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics">ecological genetics</a>), rather than genetic engineering.</p>
+
<p>The science which grew out of the union of <a href="http://en.wikipedia.org/wiki/Biochemistry" title="Biochemistry">biochemistry</a> and genetics is widely known as <a href="http://en.wikipedia.org/wiki/Molecular_biology" title="Molecular biology">molecular biology</a>. The term &quot;genetics&quot; is often widely conflated with the notion of <a href="http://en.wikipedia.org/wiki/Genetic_engineering" title="Genetic engineering">genetic engineering</a>, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see <a href="http://en.wikipedia.org/wiki/Population_genetics" title="Population genetics">population genetics</a> and <a href="http://en.wikipedia.org/wiki/Ecological_genetics" title="Ecological genetics">ecological genetics</a>), rather than genetic engineering.</p>
<p><a id="References" name="References"></a></p>
+
<p><a name="References" id="References"></a></p>
 
<h2><span class="mw-headline">References</span></h2>
 
<h2><span class="mw-headline">References</span></h2>
 
<ol class="references">
 
<ol class="references">
     <li id="_note-Hartl_and_Jones">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_0"><sup><em><strong>a</strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_1"><sup><em><strong>b</strong></em></sup></a> <cite class="book" style="FONT-STYLE: normal">Daniel Hartl and Elizabeth Jones (2005). <em>Genetics: Analysis of Genes and Genomes, 6th edition</em>. Jones &amp; Bartlett.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.title=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.au=Daniel+Hartl+and+Elizabeth+Jones&amp;rft.date=2005&amp;rft.pub=Jones+%26+Bartlett">&nbsp;</span> 854 pages. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0763715115">ISBN 0-7637-1511-5</a>. </li>
+
     <li id="_note-Hartl_and_Jones">^ <a href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_0" title=""><sup><em><strong>a</strong></em></sup></a> <a href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_1" title=""><sup><em><strong>b</strong></em></sup></a> <cite style="font-style: normal;" class="book">Daniel Hartl and Elizabeth Jones (2005). <em>Genetics: Analysis of Genes and Genomes, 6th edition</em>. Jones &amp; Bartlett.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.title=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.au=Daniel+Hartl+and+Elizabeth+Jones&amp;rft.date=2005&amp;rft.pub=Jones+%26+Bartlett" class="Z3988">&nbsp;</span> 854 pages. <a href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0763715115" class="internal">ISBN 0-7637-1511-5</a>. </li>
     <li id="_note-0"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-0">^</a></strong> <cite class="book" style="FONT-STYLE: normal">Robert C. King, Willliam D. Stansfield, Pamela K. Mulligan (2006). <em>A Dictionary of Genetics, 7th edition</em>. New York: Oxford University Press.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.title=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.au=Robert+C.+King%2C+Willliam+D.+Stansfield%2C+Pamela+K.+Mulligan&amp;rft.date=2006&amp;rft.pub=Oxford+University+Press&amp;rft.place=New+York">&nbsp;</span> 596 pages. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0195307615">ISBN 0-19-530761-5</a> (paper). </li>
+
     <li id="_note-0"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-0" title="">^</a></strong> <cite style="font-style: normal;" class="book">Robert C. King, Willliam D. Stansfield, Pamela K. Mulligan (2006). <em>A Dictionary of Genetics, 7th edition</em>. New York: Oxford University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.title=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.au=Robert+C.+King%2C+Willliam+D.+Stansfield%2C+Pamela+K.+Mulligan&amp;rft.date=2006&amp;rft.pub=Oxford+University+Press&amp;rft.place=New+York" class="Z3988">&nbsp;</span> 596 pages. <a href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0195307615" class="internal">ISBN 0-19-530761-5</a> (paper). </li>
     <li id="_note-mendel">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_0"><sup><em><strong>a</strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_1"><sup><em><strong>b</strong></em></sup></a> <cite style="FONT-STYLE: normal">Mendel, G.. &quot;Versuche &uuml;ber Pflanzen-Hybriden&quot;. <em>Verh. Naturforsch. Ver. Br&uuml;nn</em> <strong>4</strong>: 3-47.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Versuche+%C3%BCber+Pflanzen-Hybriden&amp;rft.title=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.jtitle=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.volume=4&amp;rft.au=Mendel%2C+G.&amp;rft.pages=3-47">&nbsp;</span> (in English in 1901, J. R. Hortic. Soc. 26: 1&ndash;32) </li>
+
     <li id="_note-mendel">^ <a href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_0" title=""><sup><em><strong>a</strong></em></sup></a> <a href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_1" title=""><sup><em><strong>b</strong></em></sup></a> <cite style="font-style: normal;">Mendel, G.. &quot;Versuche &uuml;ber Pflanzen-Hybriden&quot;. <em>Verh. Naturforsch. Ver. Br&uuml;nn</em> <strong>4</strong>: 3-47.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Versuche+%C3%BCber+Pflanzen-Hybriden&amp;rft.title=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.jtitle=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.volume=4&amp;rft.au=Mendel%2C+G.&amp;rft.pages=3-47" class="Z3988">&nbsp;</span> (in English in 1901, J. R. Hortic. Soc. 26: 1&ndash;32) </li>
     <li id="_note-1"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-1">^</a></strong> <a class="external text" title="http://www.jic.ac.uk/corporate/about/bateson.htm" rel="nofollow" href="http://www.jic.ac.uk/corporate/about/bateson.htm">Online copy of William Bateson's letter to Adam Sedgwick</a> </li>
+
     <li id="_note-1"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-1" title="">^</a></strong> <a href="http://www.jic.ac.uk/corporate/about/bateson.htm" rel="nofollow" title="http://www.jic.ac.uk/corporate/about/bateson.htm" class="external text">Online copy of William Bateson's letter to Adam Sedgwick</a> </li>
     <li id="_note-bateson_genetics">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_0"><sup><em><strong>a</strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_1"><sup><em><strong>b</strong></em></sup></a> <cite style="FONT-STYLE: normal">Bateson, William (1907). &quot;The Progress of Genetic Research&quot;. Wilks, W. (editor) <em>Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding</em>, London: Royal Horticultural Society.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Report+of+the+Third+1906+International+Conference+on+Genetics%3A+Hybridization+%28the+cross-breeding+of+genera+or+species%29%2C+the+cross-breeding+of+varieties%2C+and+general+plant+breeding&amp;rft.atitle=The+Progress+of+Genetic+Research&amp;rft.au=Bateson%2C+William&amp;rft.date=1907&amp;rft.pub=Royal+Horticultural+Society&amp;rft.place=London">&nbsp;</span> <dl><dd>Although the conference was titled &quot;International Conference on Hybridisation and Plant Breeding&quot;, Wilks changed the title for publication as a result of Bateson's speech. </dd></dl></li>
+
     <li id="_note-bateson_genetics">^ <a href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_0" title=""><sup><em><strong>a</strong></em></sup></a> <a href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_1" title=""><sup><em><strong>b</strong></em></sup></a> <cite style="font-style: normal;">Bateson, William (1907). &quot;The Progress of Genetic Research&quot;. Wilks, W. (editor) <em>Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding</em>, London: Royal Horticultural Society.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Report+of+the+Third+1906+International+Conference+on+Genetics%3A+Hybridization+%28the+cross-breeding+of+genera+or+species%29%2C+the+cross-breeding+of+varieties%2C+and+general+plant+breeding&amp;rft.atitle=The+Progress+of+Genetic+Research&amp;rft.au=Bateson%2C+William&amp;rft.date=1907&amp;rft.pub=Royal+Horticultural+Society&amp;rft.place=London" class="Z3988">&nbsp;</span> <dl><dd>Although the conference was titled &quot;International Conference on Hybridisation and Plant Breeding&quot;, Wilks changed the title for publication as a result of Bateson's speech. </dd></dl></li>
     <li id="_note-dna_transforming">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_0"><sup><em><strong>a</strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_1"><sup><em><strong>b</strong></em></sup></a> <cite style="FONT-STYLE: normal">Avery, MacLeod, and McCarty (1944). &quot;Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III&quot;. <em>Journal of Experimental Medicine</em> <strong>79</strong> (1): 137-58.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Studies+on+the+Chemical+Nature+of+the+Substance+Inducing+Transformation+of+Pneumococcal+Types%3A+Induction+of+Transformation+by+a+Desoxyribonucleic+Acid+Fraction+Isolated+from+Pneumococcus+Type+III&amp;rft.title=Journal+of+Experimental+Medicine&amp;rft.jtitle=Journal+of+Experimental+Medicine&amp;rft.date=1944&amp;rft.volume=79&amp;rft.issue=1&amp;rft.au=Avery%2C+MacLeod%2C+and+McCarty&amp;rft.pages=137-58">&nbsp;</span><a class="external text" title="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226">35th anniversary reprint available</a> </li>
+
     <li id="_note-dna_transforming">^ <a href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_0" title=""><sup><em><strong>a</strong></em></sup></a> <a href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_1" title=""><sup><em><strong>b</strong></em></sup></a> <cite style="font-style: normal;">Avery, MacLeod, and McCarty (1944). &quot;Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III&quot;. <em>Journal of Experimental Medicine</em> <strong>79</strong> (1): 137-58.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Studies+on+the+Chemical+Nature+of+the+Substance+Inducing+Transformation+of+Pneumococcal+Types%3A+Induction+of+Transformation+by+a+Desoxyribonucleic+Acid+Fraction+Isolated+from+Pneumococcus+Type+III&amp;rft.title=Journal+of+Experimental+Medicine&amp;rft.jtitle=Journal+of+Experimental+Medicine&amp;rft.date=1944&amp;rft.volume=79&amp;rft.issue=1&amp;rft.au=Avery%2C+MacLeod%2C+and+McCarty&amp;rft.pages=137-58" class="Z3988">&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226" rel="nofollow" title="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226" class="external text">35th anniversary reprint available</a> </li>
     <li id="_note-sanger_sequencing">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_0"><sup><em><strong>a</strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_1"><sup><em><strong>b</strong></em></sup></a> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94 </li>
+
     <li id="_note-sanger_sequencing">^ <a href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_0" title=""><sup><em><strong>a</strong></em></sup></a> <a href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_1" title=""><sup><em><strong>b</strong></em></sup></a> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94 </li>
     <li id="_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0">^</a></strong> <cite style="FONT-STYLE: normal">Ernest W. Crow and James F. Crow (2002). &quot;<a class="external text" title="http://www.genetics.org/cgi/content/full/160/1/1" rel="nofollow" href="http://www.genetics.org/cgi/content/full/160/1/1">100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity</a>&quot;. <em>Genetics</em> <strong>160</strong>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=100+Years+Ago%3A+Walter+Sutton+and+the+Chromosome+Theory+of+Heredity&amp;rft.title=Genetics&amp;rft.jtitle=Genetics&amp;rft.date=2002&amp;rft.volume=160&amp;rft.au=Ernest+W.+Crow+and+James+F.+Crow&amp;rft_id=http%3A%2F%2Fwww.genetics.org%2Fcgi%2Fcontent%2Ffull%2F160%2F1%2F1">&nbsp;</span> </li>
+
     <li id="_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0" title="">^</a></strong> <cite style="font-style: normal;">Ernest W. Crow and James F. Crow (2002). &quot;<a href="http://www.genetics.org/cgi/content/full/160/1/1" rel="nofollow" title="http://www.genetics.org/cgi/content/full/160/1/1" class="external text">100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity</a>&quot;. <em>Genetics</em> <strong>160</strong>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=100+Years+Ago%3A+Walter+Sutton+and+the+Chromosome+Theory+of+Heredity&amp;rft.title=Genetics&amp;rft.jtitle=Genetics&amp;rft.date=2002&amp;rft.volume=160&amp;rft.au=Ernest+W.+Crow+and+James+F.+Crow&amp;rft_id=http%3A%2F%2Fwww.genetics.org%2Fcgi%2Fcontent%2Ffull%2F160%2F1%2F1" class="Z3988">&nbsp;</span> </li>
     <li id="_note-2"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-2">^</a></strong> <cite style="FONT-STYLE: normal">Beadle GW, Tatum EL (1941). &quot;Genetic control of biochemical reactions in neurospora&quot;. <em>PNAS</em> <strong>27</strong>: 499-506.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Genetic+control+of+biochemical+reactions+in+neurospora&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1941&amp;rft.volume=27&amp;rft.au=Beadle+GW%2C+Tatum+EL&amp;rft.pages=499-506">&nbsp;</span> </li>
+
     <li id="_note-2"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-2" title="">^</a></strong> <cite style="font-style: normal;">Beadle GW, Tatum EL (1941). &quot;Genetic control of biochemical reactions in neurospora&quot;. <em>PNAS</em> <strong>27</strong>: 499-506.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Genetic+control+of+biochemical+reactions+in+neurospora&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1941&amp;rft.volume=27&amp;rft.au=Beadle+GW%2C+Tatum+EL&amp;rft.pages=499-506" class="Z3988">&nbsp;</span> </li>
     <li id="_note-3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-3">^</a></strong> <cite style="FONT-STYLE: normal">Watson JD and Crick FH (1953). &quot;Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid&quot;. <em>Nature</em> <strong>171</strong> (4356): 737-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Molecular+structure+of+nucleic+acids%3B+a+structure+for+deoxyribose+nucleic+acid&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1953&amp;rft.volume=171&amp;rft.issue=4356&amp;rft.au=Watson+JD+and+Crick+FH&amp;rft.pages=737-8">&nbsp;</span> </li>
+
     <li id="_note-3"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-3" title="">^</a></strong> <cite style="font-style: normal;">Watson JD and Crick FH (1953). &quot;Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid&quot;. <em>Nature</em> <strong>171</strong> (4356): 737-8.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Molecular+structure+of+nucleic+acids%3B+a+structure+for+deoxyribose+nucleic+acid&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1953&amp;rft.volume=171&amp;rft.issue=4356&amp;rft.au=Watson+JD+and+Crick+FH&amp;rft.pages=737-8" class="Z3988">&nbsp;</span> </li>
     <li id="_note-4"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-4">^</a></strong> <cite style="FONT-STYLE: normal">Meselson, M. and Stahl, F.W. (1958). &quot;The Replication of DNA in Escherichia coli&quot;. <em>PNAS</em> <strong>44</strong>: 671-82.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=The+Replication+of+DNA+in+Escherichia+coli&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1958&amp;rft.volume=44&amp;rft.au=Meselson%2C+M.+and+Stahl%2C+F.W.&amp;rft.pages=671-82">&nbsp;</span> </li>
+
     <li id="_note-4"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-4" title="">^</a></strong> <cite style="font-style: normal;">Meselson, M. and Stahl, F.W. (1958). &quot;The Replication of DNA in Escherichia coli&quot;. <em>PNAS</em> <strong>44</strong>: 671-82.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=The+Replication+of+DNA+in+Escherichia+coli&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1958&amp;rft.volume=44&amp;rft.au=Meselson%2C+M.+and+Stahl%2C+F.W.&amp;rft.pages=671-82" class="Z3988">&nbsp;</span> </li>
     <li id="_note-5"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-5">^</a></strong> <cite style="FONT-STYLE: normal">Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). &quot;Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein&quot;. <em>Nature</em> <strong>237</strong> (5350): 82-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Nucleotide+sequence+of+the+gene+coding+for+the+bacteriophage+MS2+coat+protein&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1972&amp;rft.volume=237&amp;rft.issue=5350&amp;rft.au=Min+Jou+W%2C+Haegeman+G%2C+Ysebaert+M%2C+Fiers+W.&amp;rft.pages=82-8">&nbsp;</span> </li>
+
     <li id="_note-5"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-5" title="">^</a></strong> <cite style="font-style: normal;">Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). &quot;Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein&quot;. <em>Nature</em> <strong>237</strong> (5350): 82-8.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Nucleotide+sequence+of+the+gene+coding+for+the+bacteriophage+MS2+coat+protein&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1972&amp;rft.volume=237&amp;rft.issue=5350&amp;rft.au=Min+Jou+W%2C+Haegeman+G%2C+Ysebaert+M%2C+Fiers+W.&amp;rft.pages=82-8" class="Z3988">&nbsp;</span> </li>
     <li id="_note-6"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-6">^</a></strong> <cite style="FONT-STYLE: normal">Fiers W et al. (1976). &quot;Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene&quot;. <em>Nature</em> <strong>260</strong>: 500-507.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Complete+nucleotide-sequence+of+Bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1976&amp;rft.volume=260&amp;rft.au=Fiers+W+et+al.&amp;rft.pages=500-507">&nbsp;</span> </li>
+
     <li id="_note-6"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-6" title="">^</a></strong> <cite style="font-style: normal;">Fiers W et al. (1976). &quot;Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene&quot;. <em>Nature</em> <strong>260</strong>: 500-507.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Complete+nucleotide-sequence+of+Bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1976&amp;rft.volume=260&amp;rft.au=Fiers+W+et+al.&amp;rft.pages=500-507" class="Z3988">&nbsp;</span> </li>
     <li id="_note-7"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-7">^</a></strong> <a class="external free" title="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf" rel="nofollow" href="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf">http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf</a> </li>
+
     <li id="_note-7"><strong><a href="http://en.wikipedia.org/wiki/Genetics#_ref-7" title="">^</a></strong> <a href="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf" rel="nofollow" title="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf" class="external free">http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf</a> </li>
 
</ol>
 
</ol>
<p><a id="See_also" name="See_also"></a></p>
+
<p><a name="See_also" id="See_also"></a></p>
 
<h2><span class="mw-headline">See also</span></h2>
 
<h2><span class="mw-headline">See also</span></h2>
 
<ul>
 
<ul>
     <li><a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics">Epigenetics</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Epigenetics" title="Epigenetics">Epigenetics</a> </li>
     <li><a title="Evolution" href="http://en.wikipedia.org/wiki/Evolution">Evolution</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Evolution" title="Evolution">Evolution</a> </li>
     <li><a title="List of genetics-related topics" href="http://en.wikipedia.org/wiki/List_of_genetics-related_topics">List of genetics-related topics</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/List_of_genetics-related_topics" title="List of genetics-related topics">List of genetics-related topics</a> </li>
     <li><a title="List of genetic engineering topics" href="http://en.wikipedia.org/wiki/List_of_genetic_engineering_topics">List of genetic engineering topics</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/List_of_genetic_engineering_topics" title="List of genetic engineering topics">List of genetic engineering topics</a> </li>
     <li><a title="Central dogma of molecular biology" href="http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology">Central dogma of molecular biology</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology" title="Central dogma of molecular biology">Central dogma of molecular biology</a> </li>
     <li><a title="Chimera (genetics)" href="http://en.wikipedia.org/wiki/Chimera_%28genetics%29">Chimerism</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Chimera_%28genetics%29" title="Chimera (genetics)">Chimerism</a> </li>
     <li><a title="Gene gun" href="http://en.wikipedia.org/wiki/Gene_gun">Gene gun</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Gene_gun" title="Gene gun">Gene gun</a> </li>
     <li><a title="Gene regulatory network" href="http://en.wikipedia.org/wiki/Gene_regulatory_network">Gene regulatory network</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Gene_regulatory_network" title="Gene regulatory network">Gene regulatory network</a> </li>
     <li><a title="Genetic counseling" href="http://en.wikipedia.org/wiki/Genetic_counseling">Genetic counseling</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Genetic_counseling" title="Genetic counseling">Genetic counseling</a> </li>
     <li><a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering">Genetic engineering</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Genetic_engineering" title="Genetic engineering">Genetic engineering</a> </li>
     <li><a title="Genetic screen" href="http://en.wikipedia.org/wiki/Genetic_screen">Genetic screen</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Genetic_screen" title="Genetic screen">Genetic screen</a> </li>
     <li><a title="Genetic testing" href="http://en.wikipedia.org/wiki/Genetic_testing">Genetic testing</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Genetic_testing" title="Genetic testing">Genetic testing</a> </li>
     <li><a title="List of publications in biology" href="http://en.wikipedia.org/wiki/List_of_publications_in_biology#Genetics">Important publications in genetics</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/List_of_publications_in_biology#Genetics" title="List of publications in biology">Important publications in genetics</a> </li>
     <li><a title="List of genetics research organizations" href="http://en.wikipedia.org/wiki/List_of_genetics_research_organizations">List of genetics research organizations</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/List_of_genetics_research_organizations" title="List of genetics research organizations">List of genetics research organizations</a> </li>
     <li><a title="List of geneticists" href="http://en.wikipedia.org/wiki/List_of_geneticists">List of geneticists</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/List_of_geneticists" title="List of geneticists">List of geneticists</a> </li>
     <li><a title="Human mitochondrial genetics" href="http://en.wikipedia.org/wiki/Human_mitochondrial_genetics">Human mitochondrial genetics</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Human_mitochondrial_genetics" title="Human mitochondrial genetics">Human mitochondrial genetics</a> </li>
     <li><a title="Reprogenetics" href="http://en.wikipedia.org/wiki/Reprogenetics">Reprogenetics</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Reprogenetics" title="Reprogenetics">Reprogenetics</a> </li>
     <li><a title="Punnett square" href="http://en.wikipedia.org/wiki/Punnett_square">Punnett square</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Punnett_square" title="Punnett square">Punnett square</a> </li>
     <li><a title="Genetically modified food" href="http://en.wikipedia.org/wiki/Genetically_modified_food">Genetically modified food</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Genetically_modified_food" title="Genetically modified food">Genetically modified food</a> </li>
     <li><a title="Transgenic plants" href="http://en.wikipedia.org/wiki/Transgenic_plants">Transgenic plants</a> </li>
+
     <li><a href="http://en.wikipedia.org/wiki/Transgenic_plants" title="Transgenic plants">Transgenic plants</a> </li>
 
</ul>
 
</ul>
<p><a id="Journals" name="Journals"></a></p>
+
<p><a name="Journals" id="Journals"></a></p>
 
<h2><span class="mw-headline">Journals</span></h2>
 
<h2><span class="mw-headline">Journals</span></h2>
 
<ul>
 
<ul>
     <li><em><a title="American Journal of Human Genetics" href="http://en.wikipedia.org/wiki/American_Journal_of_Human_Genetics">American Journal of Human Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/American_Journal_of_Human_Genetics" title="American Journal of Human Genetics">American Journal of Human Genetics</a></em> </li>
     <li><em><a class="new" title="American Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=American_Journal_of_Medical_Genetics&amp;action=edit">American Journal of Medical Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/w/index.php?title=American_Journal_of_Medical_Genetics&amp;action=edit" title="American Journal of Medical Genetics" class="new">American Journal of Medical Genetics</a></em> </li>
     <li><em><a title="Annals of Human Genetics" href="http://en.wikipedia.org/wiki/Annals_of_Human_Genetics">Annals of Human Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/Annals_of_Human_Genetics" title="Annals of Human Genetics">Annals of Human Genetics</a></em> </li>
     <li><em><a title="European Journal of Human Genetics" href="http://en.wikipedia.org/wiki/European_Journal_of_Human_Genetics">European Journal of Human Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/European_Journal_of_Human_Genetics" title="European Journal of Human Genetics">European Journal of Human Genetics</a></em> </li>
     <li><em><a title="Genome Research" href="http://en.wikipedia.org/wiki/Genome_Research">Genome Research</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/Genome_Research" title="Genome Research">Genome Research</a></em> </li>
     <li><em><a class="new" title="Genomics (journal)" href="http://en.wikipedia.org/w/index.php?title=Genomics_%28journal%29&amp;action=edit">Genomics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/w/index.php?title=Genomics_%28journal%29&amp;action=edit" title="Genomics (journal)" class="new">Genomics</a></em> </li>
     <li><em><a title="Genetics (journal)" href="http://en.wikipedia.org/wiki/Genetics_%28journal%29">Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/Genetics_%28journal%29" title="Genetics (journal)">Genetics</a></em> </li>
     <li><em><a title="Heredity (journal)" href="http://en.wikipedia.org/wiki/Heredity_%28journal%29">Heredity</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/Heredity_%28journal%29" title="Heredity (journal)">Heredity</a></em> </li>
     <li><em><a class="new" title="Human Molecular Genetics" href="http://en.wikipedia.org/w/index.php?title=Human_Molecular_Genetics&amp;action=edit">Human Molecular Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/w/index.php?title=Human_Molecular_Genetics&amp;action=edit" title="Human Molecular Genetics" class="new">Human Molecular Genetics</a></em> </li>
     <li><em><a title="Journal of Genetics" href="http://en.wikipedia.org/wiki/Journal_of_Genetics">Journal of Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/Journal_of_Genetics" title="Journal of Genetics">Journal of Genetics</a></em> </li>
     <li><em><a class="new" title="Journal of Human Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Human_Genetics&amp;action=edit">Journal of Human Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/w/index.php?title=Journal_of_Human_Genetics&amp;action=edit" title="Journal of Human Genetics" class="new">Journal of Human Genetics</a></em> </li>
     <li><em><a class="new" title="Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Medical_Genetics&amp;action=edit">Journal of Medical Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/w/index.php?title=Journal_of_Medical_Genetics&amp;action=edit" title="Journal of Medical Genetics" class="new">Journal of Medical Genetics</a></em> </li>
     <li><em><a title="Nature Reviews Genetics" href="http://en.wikipedia.org/wiki/Nature_Reviews_Genetics">Nature Reviews Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/Nature_Reviews_Genetics" title="Nature Reviews Genetics">Nature Reviews Genetics</a></em> </li>
     <li><em><a title="PLoS Genetics" href="http://en.wikipedia.org/wiki/PLoS_Genetics">PLoS Genetics</a></em> </li>
+
     <li><em><a href="http://en.wikipedia.org/wiki/PLoS_Genetics" title="PLoS Genetics">PLoS Genetics</a></em> </li>
 
</ul>
 
</ul>
<p><a id="External_link" name="External_link"></a></p>
+
<p><a name="External_link" id="External_link"></a></p>
 
<h2><span class="mw-headline">External link</span></h2>
 
<h2><span class="mw-headline">External link</span></h2>
 
<div class="infobox sisterproject">
 
<div class="infobox sisterproject">
<div style="FLOAT: left">
+
<div style="float: left;">
<div class="floatnone"><span><a class="image" title="Wikibooks" href="http://en.wikipedia.org/wiki/Image:Wikibooks-logo-en.svg"></a></span></div>
+
<div class="floatnone"><span><a href="http://en.wikipedia.org/wiki/Image:Wikibooks-logo-en.svg" title="Wikibooks" class="image"></a></span></div>
 
</div>
 
</div>
<div style="MARGIN-LEFT: 60px"><a title="Wikibooks" href="http://en.wikipedia.org/wiki/Wikibooks">Wikibooks</a> has a book on the topic of
+
<div style="margin-left: 60px;"><a href="http://en.wikipedia.org/wiki/Wikibooks" title="Wikibooks">Wikibooks</a> has a book on the topic of
<div style="MARGIN-LEFT: 10px"><em><a class="extiw" title="wikibooks:Genetics" href="http://en.wikibooks.org/wiki/Genetics">Genetics</a></em></div>
+
<div style="margin-left: 10px;"><em><a href="http://en.wikibooks.org/wiki/Genetics" title="wikibooks:Genetics" class="extiw">Genetics</a></em></div>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="infobox sisterproject">
 
<div class="infobox sisterproject">
<div class="floatleft"><span><a class="image" title="" href="http://en.wikipedia.org/wiki/Image:Commons-logo.svg"></a></span></div>
+
<div class="floatleft"><span><a href="http://en.wikipedia.org/wiki/Image:Commons-logo.svg" title="" class="image"></a></span></div>
<div style="MARGIN-LEFT: 60px"><a title="Wikimedia Commons" href="http://en.wikipedia.org/wiki/Wikimedia_Commons">Wikimedia Commons</a> has media related to:
+
<div style="margin-left: 60px;"><a href="http://en.wikipedia.org/wiki/Wikimedia_Commons" title="Wikimedia Commons">Wikimedia Commons</a> has media related to:
<div style="MARGIN-LEFT: 10px"><em><strong><a class="extiw" title="commons:Category:Genetics" href="http://commons.wikimedia.org/wiki/Category:Genetics">Genetics</a></strong></em></div>
+
<div style="margin-left: 10px;"><em><strong><a href="http://commons.wikimedia.org/wiki/Category:Genetics" title="commons:Category:Genetics" class="extiw">Genetics</a></strong></em></div>
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 22:30, 28 June 2007

Genetics (from the Greek genno γεννώ = give birth) is the science of genes, heredity, evolution, and the variation of organisms. The phenomenon of inheritance has been implicitly utilized in breeding of organisms and selection for desired traits, and the scientific field of genetics seeks to understand the mechanisms of inheritance.

The genetic information of organisms is contained within the chemical structure of DNA (deoxyribonucleic acid) molecules. Individually inherited traits, corresponding to regions in the DNA sequence, are called genes. Genes encode the information necessary for synthesizing RNA and proteins -- complex molecules generally responsible for enzymatic reactions, synthesis, communication and structure within a cell. DNA sequence is transcribed into an intermediate molecule called "messenger RNA", and ribosomes translate this sequence to form a chain of amino acids to form a protein. This process is known as the central dogma of molecular biology.

Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment that determines the ultimate outcome. Thus, while identical twins have the same DNA and genes, differences in their experiences during development and childhood results in different personalities and fingerprints.

 

History

Main article: History of genetics
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes.
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes.

Gregor Johann Mendel, a German-Czech Augustinian monk and scientist, is often called the "father of modern genetics", a title given to him due to his early work on the heredity of plants. In his paper "Versuche über Pflanzenhybriden" ("Experiments on Plant Hybridization"), presented in 1865 to the Brunn Natural History Society, Gregor Mendel traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.[3] Although not all features show these patterns of Mendelian inheritance, his work suggested the utility of the application of statistics to the study of inheritance.

The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word "genetics" itself was coined by William Bateson, a significant proponent of Mendel's work, in a letter to Adam Sedgwick, dated April 18, 1905.[4] Bateson promoted the term "genetics" publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.[5]

In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 Thomas Hunt Morgan argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student Alfred Sturtevant used the phenomenon of genetic linkage and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.

The chemical structure of DNA.
The chemical structure of DNA.

Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, Frederick Griffith published his discovery of the phenomenon of transformation (see Griffith's experiment); sixteen years later, in 1944, Oswald Theodore Avery, Colin McLeod and Maclyn McCarty used this phenomenon to isolate and identify the molecule responsible for transformation as DNA[6]. The Hershey-Chase experiment in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance.

James D. Watson and Francis Crick resolved the structure of DNA in 1953, using X-ray crystallography information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a "complement" on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of DNA sequencing in 1977 enabled the determination of nucleotide sequences on DNA,[7] and the PCR method developed by Kary Banks Mullis in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the Human Genome Project and parallel private effort by Celera Genomics, culminated in the sequencing of the human genome in 2001.

Timeline of notable discoveries

Areas of genetics

Classical genetics

Main articles: Classical genetics, Mendelian inheritance

Classical genetics consists of the techniques and methodologies of genetics that predate the advent of molecular biology. After the discovery of the genetic code and such tools of cloning as restriction enzymes, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as Mendel's laws and Muller's morphs. Patterns of inheritance still remain a useful tool for the study of genetic diseases.

Behavioral genetics

Main article: Behavioral genetics

Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of natural selection, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as Richard Dawkins and W. D. Hamilton to propose explanations, including the theories of kin selection and reciprocal altruism. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.

Clinical genetics

Main article: Clinical genetics

Physicians who are trained as Geneticists diagnose, treat, and counsel patients with genetic disorders or syndromes. These doctors are typically trained in a genetics residency and/or fellowship.

Clinical genetics is also the study of genetic causes of clinical diseases.

Molecular genetics

Main article: Molecular genetics

Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a molecular level. Molecular genetics employs the methods of both classical genetics (such as hybridization) and molecular biology. It is so-called to differentiate it from other sub fields of genetics such as ecological genetics and population genetics. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct scientific classification of organisms: this is called molecular systematics. The study of inherited features not strictly associated with changes in the DNA sequence is called epigenetics.

Some take the view that life can be defined, in molecular terms, as the set of strategies which RNA polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the origin of life, specifically the RNA world hypothesis.

Population, quantitative and ecological genetics

Main articles: Population genetics, Quantitative genetics, Ecological genetics

Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying populations of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in allele frequencies of genes under the influence of the four evolutionary forces: natural selection, genetic drift, mutation and migration. It is the theory that attempts to explain such phenomena as adaptation and speciation.

The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to selection given data on the phenotype and relationships of individuals. A more recent development of quantitative genetics is the analysis of quantitative trait loci. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the chromosome requires accurate phenotypic, pedigree and marker data from a large number of related individuals.

Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on ecological issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.

Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of Mendelian randomization.

Genomics

Main article: Genomics

A more recent development is the rise of genomics, which attempts the study of large-scale genetic patterns across the genome for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and Sequence profiling tool using bioinformatics approaches for analysis of large sets of data.

Closely-related fields

The science which grew out of the union of biochemistry and genetics is widely known as molecular biology. The term "genetics" is often widely conflated with the notion of genetic engineering, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see population genetics and ecological genetics), rather than genetic engineering.

References

  1. ^ a b Daniel Hartl and Elizabeth Jones (2005). Genetics: Analysis of Genes and Genomes, 6th edition. Jones & Bartlett.  854 pages. ISBN 0-7637-1511-5.
  2. ^ Robert C. King, Willliam D. Stansfield, Pamela K. Mulligan (2006). A Dictionary of Genetics, 7th edition. New York: Oxford University Press.  596 pages. ISBN 0-19-530761-5 (paper).
  3. ^ a b Mendel, G.. "Versuche über Pflanzen-Hybriden". Verh. Naturforsch. Ver. Brünn 4: 3-47.  (in English in 1901, J. R. Hortic. Soc. 26: 1–32)
  4. ^ Online copy of William Bateson's letter to Adam Sedgwick
  5. ^ a b Bateson, William (1907). "The Progress of Genetic Research". Wilks, W. (editor) Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding, London: Royal Horticultural Society. 
    Although the conference was titled "International Conference on Hybridisation and Plant Breeding", Wilks changed the title for publication as a result of Bateson's speech.
  6. ^ a b Avery, MacLeod, and McCarty (1944). "Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III". Journal of Experimental Medicine 79 (1): 137-58. 35th anniversary reprint available
  7. ^ a b Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94
  8. ^ Ernest W. Crow and James F. Crow (2002). "100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity". Genetics 160. 
  9. ^ Beadle GW, Tatum EL (1941). "Genetic control of biochemical reactions in neurospora". PNAS 27: 499-506. 
  10. ^ Watson JD and Crick FH (1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid". Nature 171 (4356): 737-8. 
  11. ^ Meselson, M. and Stahl, F.W. (1958). "The Replication of DNA in Escherichia coli". PNAS 44: 671-82. 
  12. ^ Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). "Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein". Nature 237 (5350): 82-8. 
  13. ^ Fiers W et al. (1976). "Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene". Nature 260: 500-507. 
  14. ^ http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf

See also

Journals

External link

Wikibooks has a book on the topic of
Wikimedia Commons has media related to: