Difference between revisions of "Sphericity"

From Opengenome.net
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
 
<dl><dd><img class="tex" alt="\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}" src="http://upload.wikimedia.org/math/e/a/2/ea230750eba82fd8fe1b178ea651d242.png" /></dd></dl>
 
<dl><dd><img class="tex" alt="\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}" src="http://upload.wikimedia.org/math/e/a/2/ea230750eba82fd8fe1b178ea651d242.png" /></dd></dl>
 
<p>where <span class="texhtml"><em>V</em><sub><em>p</em></sub></span> is volume of the particle and <span class="texhtml"><em>A</em><sub><em>p</em></sub></span> is the surface area of the particle</p>
 
<p>where <span class="texhtml"><em>V</em><sub><em>p</em></sub></span> is volume of the particle and <span class="texhtml"><em>A</em><sub><em>p</em></sub></span> is the surface area of the particle</p>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">Ellipsoidal Objects</span></h2>
+
<p><span class="mw-headline"><font size="5">Ellipsoidal Objects</font></span></p>
<dl><dd><span class="boilerplate seealso"><em>See also: Earth radius</em></span></dd></dl>
 
 
<p>The sphericity, <span class="texhtml">&Psi;</span>, of an oblate spheroid (similar to the shape of the planet Earth) is defined as such:</p>
 
<p>The sphericity, <span class="texhtml">&Psi;</span>, of an oblate spheroid (similar to the shape of the planet Earth) is defined as such:</p>
 
<dl><dd><img class="tex" alt="\Psi =
 
<dl><dd><img class="tex" alt="\Psi =
Line 12: Line 10:
 
<p><em>(where a, b are the semi-major, semi-minor axes, respectively.</em></p>
 
<p><em>(where a, b are the semi-major, semi-minor axes, respectively.</em></p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">Derivation</span></h2>
+
<p><span class="mw-headline"><font size="5">Derivation</font></span></p>
 
<p>Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.</p>
 
<p>Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.</p>
 
<p>First we need to write surface area of the sphere, <span class="texhtml"><em>A</em><sub><em>s</em></sub></span> in terms of the volume of the particle, <span class="texhtml"><em>V</em><sub><em>p</em></sub></span></p>
 
<p>First we need to write surface area of the sphere, <span class="texhtml"><em>A</em><sub><em>s</em></sub></span> in terms of the volume of the particle, <span class="texhtml"><em>V</em><sub><em>p</em></sub></span></p>
Line 21: Line 19:
 
<dl><dd><img class="tex" alt="\Psi = \frac{A_s}{A_p} = \frac{ \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }{A_{p}}" src="http://upload.wikimedia.org/math/0/6/9/06986e86f9d53b2e4f3560f330909416.png" /></dd></dl>
 
<dl><dd><img class="tex" alt="\Psi = \frac{A_s}{A_p} = \frac{ \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }{A_{p}}" src="http://upload.wikimedia.org/math/0/6/9/06986e86f9d53b2e4f3560f330909416.png" /></dd></dl>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">Sphericity of common objects</span></h2>
+
<p><span class="mw-headline"><font size="5">Sphericity of common objects</font></span></p>
 
<table style="MARGIN: 0pt auto; BORDER-COLLAPSE: collapse; TEXT-ALIGN: center" cellpadding="7" border="1">
 
<table style="MARGIN: 0pt auto; BORDER-COLLAPSE: collapse; TEXT-ALIGN: center" cellpadding="7" border="1">
 
     <tbody>
 
     <tbody>
Line 148: Line 146:
 
</table>
 
</table>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">Sphericity in Statistics</span></h2>
+
<p><span class="mw-headline"><font size="5">Sphericity in Statistics</font></span></p>
 
<p>In statistical analyses, sphericity relates to the equality of the variances of the differences between levels of the repeated measures factor. Sphericity requires that the variances for each set of difference scores are equal. This is an assumption of an ANOVA with a repeated measures factor, where violations of this assumption can invalidate the analysis conclusions. Mauchly's sphericity test is the statistical test used to evaluate sphericity.</p>
 
<p>In statistical analyses, sphericity relates to the equality of the variances of the differences between levels of the repeated measures factor. Sphericity requires that the variances for each set of difference scores are equal. This is an assumption of an ANOVA with a repeated measures factor, where violations of this assumption can invalidate the analysis conclusions. Mauchly's sphericity test is the statistical test used to evaluate sphericity.</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">References</span></h2>
+
<p><span class="mw-headline"><font size="5">References</font></span></p>
 
<ol class="references">
 
<ol class="references">
 
     <li id="cite_note-0"><strong>^</strong> <cite style="FONT-STYLE: normal">Wadell, Hakon (1935). &quot;Volume, Shape and Roundness of Quartz Particles&quot;. <em>Journal of Geology</em> <strong>43</strong>: 250&ndash;280.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Volume%2C+Shape+and+Roundness+of+Quartz+Particles&amp;rft.jtitle=Journal+of+Geology&amp;rft.date=1935&amp;rft.volume=43&amp;rft.aulast=Wadell&amp;rft.aufirst=Hakon&amp;rft.pages=250%E2%80%93280">&nbsp;</span> </li>
 
     <li id="cite_note-0"><strong>^</strong> <cite style="FONT-STYLE: normal">Wadell, Hakon (1935). &quot;Volume, Shape and Roundness of Quartz Particles&quot;. <em>Journal of Geology</em> <strong>43</strong>: 250&ndash;280.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Volume%2C+Shape+and+Roundness+of+Quartz+Particles&amp;rft.jtitle=Journal+of+Geology&amp;rft.date=1935&amp;rft.volume=43&amp;rft.aulast=Wadell&amp;rft.aufirst=Hakon&amp;rft.pages=250%E2%80%93280">&nbsp;</span> </li>
 
</ol>
 
</ol>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">See also</span></h2>
+
<p><span class="mw-headline"><font size="5">See also</font></span></p>
 
<ul>
 
<ul>
 
     <li>Rounding (sediment) </li>
 
     <li>Rounding (sediment) </li>
 +
    <li>[[Structural biology]]</li>
 
</ul>
 
</ul>
<p><a id="External_links" name="External_links"></a></p>
+
<p>&nbsp;</p>
<h2><span class="mw-headline">External links</span></h2>
+
<p><span class="mw-headline"><font size="5">External links</font></span></p>
 
<ul>
 
<ul>
 
     <li><a class="external text" title="http://www.howround.com/" rel="nofollow" href="http://www.howround.com/">How round is your circle?</a> </li>
 
     <li><a class="external text" title="http://www.howround.com/" rel="nofollow" href="http://www.howround.com/">How round is your circle?</a> </li>
 
     <li><a class="external text" title="http://people.uncw.edu/dockal/gly312/grains/grains.htm" rel="nofollow" href="http://people.uncw.edu/dockal/gly312/grains/grains.htm">Grain Morphology: Roundness, Surface Features, and Sphericity of Grains</a> </li>
 
     <li><a class="external text" title="http://people.uncw.edu/dockal/gly312/grains/grains.htm" rel="nofollow" href="http://people.uncw.edu/dockal/gly312/grains/grains.htm">Grain Morphology: Roundness, Surface Features, and Sphericity of Grains</a> </li>
 
</ul>
 
</ul>

Latest revision as of 07:46, 31 March 2008

Sphericity is a measure of how spherical (round) an object is. As such, it is a specific example of a compactness measure of a shape. Defined by Wadell in 1935,[1] the sphericity, Ψ, of a particle is the ratio of the surface area of a sphere (with the same volume as the given particle) to the surface area of the particle:

\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}

where Vp is volume of the particle and Ap is the surface area of the particle

 

Ellipsoidal Objects

The sphericity, Ψ, of an oblate spheroid (similar to the shape of the planet Earth) is defined as such:

\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p} = \frac{2\sqrt[3]{ab^2}}{a+\frac{b^2}{\sqrt{a^2-b^2}}\ln{(\frac{a+\sqrt{a^2-b^2}}b)}}

(where a, b are the semi-major, semi-minor axes, respectively.

 

Derivation

Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.

First we need to write surface area of the sphere, As in terms of the volume of the particle, Vp

A_{s}^3 = \left(4 \pi r^2\right)^3 = 4^3 \pi^3 r^6 = 4 \pi \left(4^2 \pi^2 r^6\right) = 4 \pi \cdot 3^2 \left(\frac{4^2 \pi^2}{3^2} r^6\right) = 36 \pi \left(\frac{4 \pi}{3} r^3\right)^2 = 36\,\pi V_{p}^2

therefore

A_{s} = \left(36\,\pi V_{p}^2\right)^{\frac{1}{3}} = 36^{\frac{1}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = 6^{\frac{2}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}}

hence we define Ψ as:

\Psi = \frac{A_s}{A_p} = \frac{ \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }{A_{p}}

 

Sphericity of common objects

Name Picture Volume Area Sphericity
Platonic Solids
tetrahedron Tetrahedron \frac{\sqrt{2}}{12}\,s^3 \sqrt{3}\,s^2 \left(\frac{\pi}{6\sqrt{3}}\right)^{\frac{1}{3}} \approx 0.671
cube (hexahedron) Hexahedron (cube) \,s^3 6\,s^2

\left( \frac{\pi}{6} \right)^{\frac{1}{3}} \approx 0.806

octahedron Octahedron \frac{1}{3} \sqrt{2}\, s^3 2 \sqrt{3}\, s^2

\left( \frac{\pi}{3\sqrt{3}} \right)^{\frac{1}{3}} \approx 0.846

dodecahedron Dodecahedron \frac{1}{4} \left(15 + 7\sqrt{5}\right)\, s^3 3 \sqrt{25 + 10\sqrt{5}}\, s^2

\left( \frac{\left(15 + 7\sqrt{5}\right)^2 \pi}{12\left(25+10\sqrt{5}\right)^{\frac{3}{2}}} \right)^{\frac{1}{3}} \approx 0.910

icosahedron Icosahedron \frac{5}{12}\left(3+\sqrt{5}\right)\, s^3 5\sqrt{3}\,s^2 \left( \frac{ \left(3 + \sqrt{5} \right)^2 \pi}{60\sqrt{3}} \right)^{\frac{1}{3}} \approx 0.939
Round Shapes
ideal cone
(h=2\sqrt{2}r)
  \frac{1}{3} \pi\, r^2 h

= \frac{2\sqrt{2}}{3} \pi\, r^3

\pi\, r (r + \sqrt{r^2 + h^2})

= 4 \pi\, r^2

\left( \frac{1}{2} \right)^{\frac{1}{3}} \approx 0.794
hemisphere
(half sphere)
  \frac{2}{3} \pi\, r^3 3 \pi\, r^2

\left( \frac{16}{27} \right)^{\frac{1}{3}} \approx 0.840

ideal cylinder
(h=2\,r)
  \pi r^2 h = 2 \pi\,r^3 2 \pi r ( r + h ) = 6 \pi\,r^2

\left( \frac{2}{3} \right)^{\frac{1}{3}} \approx 0.874

ideal torus
(R = r)
  2 \pi^2 R r^2 = 2 \pi^2 \,r^3 4 \pi^2 R r = 4 \pi^2\,r^2

\left( \frac{9}{4 \pi} \right)^{\frac{1}{3}} \approx 0.894

sphere   \frac{4}{3} \pi r^3 4 \pi\,r^2

1\,

 

Sphericity in Statistics

In statistical analyses, sphericity relates to the equality of the variances of the differences between levels of the repeated measures factor. Sphericity requires that the variances for each set of difference scores are equal. This is an assumption of an ANOVA with a repeated measures factor, where violations of this assumption can invalidate the analysis conclusions. Mauchly's sphericity test is the statistical test used to evaluate sphericity.

 

References

  1. ^ Wadell, Hakon (1935). "Volume, Shape and Roundness of Quartz Particles". Journal of Geology 43: 250–280. 

 

See also

 

External links