Difference between revisions of "Genetics"

From Opengenome.net
 
(13 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<p><strong>Genetics</strong> (from the <font color="#0066cc">Greek</font> <em>genno</em> <strong>&gamma;&epsilon;&nu;&nu;ώ</strong> = give birth) is the <font color="#0066cc">science</font> of <font color="#0066cc">genes</font>, <font color="#0066cc">heredity</font>, and the <font color="#0066cc">variation</font> of <font color="#0066cc">organisms</font>.<sup class="reference" id="_ref-Hartl_and_Jones_0"><font color="#0066cc">[1]</font></sup><sup class="reference" id="_ref-0"><font color="#0066cc">[2]</font></sup> The phenomenon of inheritance has been implicitly utilized in breeding of organisms and selection for desired traits, and the scientific field of genetics seeks to understand the mechanisms of inheritance.</p>
+
<p><strong>Genetics</strong> (from the Greek <em>genno</em> <strong>&gamma;&epsilon;&nu;&nu;&Iuml;Ž</strong> = give birth) is the science of genes, heredity, evolution, and the variation of organisms. The phenomenon of inheritance has been implicitly utilized in breeding of organisms and selection for desired traits, and the scientific field of genetics seeks to understand the mechanisms of inheritance.<a rel="dofollow" href="http://www.miere-bucovina.ro" title="miere de albine"><img hspace="2" border="0" vspace="2" src="http://www.all-auto.ro/img/a%20auto" alt="miere de albine" /></a></p>
<p>The genetic information of organisms is contained within the chemical structure of <font color="#0066cc">DNA</font> (deoxyribonucleic acid) molecules. Individually inherited traits, corresponding to regions in the DNA sequence, are called <font color="#0066cc">genes</font>. Genes encode the information necessary for synthesizing <font color="#0066cc">proteins</font> -- complex molecules generally responsible for enzymatic reactions, synthesis, communication and structure within a cell. DNA sequence is transcribed into an intermediate molecule called &quot;<font color="#0066cc">messenger RNA</font>&quot;, and <font color="#0066cc">ribosomes</font> translate this sequence to form a chain of amino acids to form a <font color="#0066cc">protein</font>. This process is known as the <font color="#0066cc">central dogma of molecular biology</font>.</p>
+
<p>The genetic information of organisms is contained within the chemical structure of [[DNA]] (deoxyribonucleic acid) molecules. Individually inherited traits, corresponding to regions in the DNA sequence, are called genes. Genes encode the information necessary for synthesizing RNA and proteins -- complex molecules generally responsible for enzymatic reactions, synthesis, communication and structure within a cell. DNA sequence is transcribed into an intermediate molecule called &quot;messenger RNA&quot;, and ribosomes translate this sequence to form a chain of amino acids to form a protein. This process is known as the central dogma of molecular biology.<a rel="dofollow" href="http://www.auto-my.com/auto-parts" title="auto parts online"><img hspace="2" border="0" vspace="2" src="http://www.all-auto.ro/img/a%20auto" alt="auto parts online" /></a></p>
<p>Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment that determines the ultimate outcome. Thus, while <font color="#0066cc">identical twins</font> have the same DNA and genes, differences in their experiences during development and childhood results in different <font color="#0066cc">personalities</font> and <font color="#0066cc">fingerprints</font>. </p>
+
<p>Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment that determines the ultimate outcome. Thus, while identical twins have the same DNA and genes, differences in their experiences during development and childhood results in different personalities and fingerprints.</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 
<h2><span class="mw-headline">History</span></h2>
 
<h2><span class="mw-headline">History</span></h2>
<dl><dd>
+
<p>&nbsp;</p>
<div class="noprint"><em>Main article: <a title="History of genetics" href="http://en.wikipedia.org/wiki/History_of_genetics"><font color="#0066cc">History of genetics</font></a></em></div>
 
</dd></dl>
 
 
<div class="thumb tright">
 
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 202px"><a class="internal" title="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><font color="#0066cc"><img class="thumbimage" height="183" alt="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." width="200" longdesc="/wiki/Image:Sexlinked_inheritance_white.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Sexlinked_inheritance_white.jpg/200px-Sexlinked_inheritance_white.jpg" /></font></a>
+
<div class="thumbinner" style="width: 202px;"><img height="183" width="200" class="thumbimage" alt="Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes." longdesc="/wiki/Image:Sexlinked_inheritance_white.jpg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Sexlinked_inheritance_white.jpg/200px-Sexlinked_inheritance_white.jpg" />
 
<div class="thumbcaption">
 
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:Sexlinked_inheritance_white.jpg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>
+
<div class="magnify" style="float: right;"><img height="11" width="15" alt="" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></div>
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in <a title="Drosophila" href="http://en.wikipedia.org/wiki/Drosophila"><font color="#0066cc">Drosophila</font></a> led him to the hypothesis that genes are located upon chromosomes.</div>
+
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes.</div>
 
</div>
 
</div>
 
</div>
 
</div>
<p><a title="Gregor Johann Mendel" href="http://en.wikipedia.org/wiki/Gregor_Johann_Mendel"><font color="#0066cc">Gregor Johann Mendel</font></a>, a German-Czech <a title="Augustinian" href="http://en.wikipedia.org/wiki/Augustinian"><font color="#0066cc">Augustinian</font></a> monk and scientist, is often called the &quot;father of modern genetics&quot;, a title given to him due to his early work on the heredity of plants. In his paper &quot;Versuche &uuml;ber Pflanzenhybriden&quot; (&quot;<a title="Experiments on Plant Hybridization" href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization"><font color="#0066cc">Experiments on Plant Hybridization</font></a>&quot;), presented in <a title="1865" href="http://en.wikipedia.org/wiki/1865"><font color="#0066cc">1865</font></a> to the Brunn Natural History Society, <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel"><font color="#0066cc">Gregor Mendel</font></a> traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.<sup class="reference" id="_ref-mendel_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel"><font color="#0066cc">[3]</font></a></sup> Although not all features show these patterns of <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">Mendelian inheritance</font></a>, his work suggested the utility of the application of statistics to the study of inheritance.</p>
+
<p>Gregor Johann Mendel, a German-Czech Augustinian monk and scientist, is often called the &quot;father of modern genetics&quot;, a title given to him due to his early work on the heredity of plants. In his paper &quot;Versuche &uuml;ber Pflanzenhybriden&quot; (&quot;Experiments on Plant Hybridization&quot;), presented in 1865 to the Brunn Natural History Society, Gregor Mendel traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.<sup class="reference" id="_ref-mendel_0">[3]</sup> Although not all features show these patterns of Mendelian inheritance, his work suggested the utility of the application of statistics to the study of inheritance.<a rel="dofollow" href="http://www.auto-my.ro/vanzari-auto" title="vanzari auto"><img hspace="2" border="0" vspace="2" src="http://www.all-auto.ro/img/a%20auto" alt="vanzari auto" /></a></p>
<p>The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word &quot;genetics&quot; itself was coined by <font color="#0066cc">William Bateson</font>, a significant proponent of Mendel's work, in a letter to <font color="#0066cc">Adam Sedgwick</font>, dated <font color="#0066cc">April 18</font>, <font color="#0066cc">1905</font>.<sup class="reference" id="_ref-1"><font color="#0066cc">[4]</font></sup> Bateson promoted the term &quot;genetics&quot; publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.<sup class="reference" id="_ref-bateson_genetics_0"><font color="#0066cc">[5]</font></sup></p>
+
<p>The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word &quot;genetics&quot; itself was coined by William Bateson, a significant proponent of Mendel's work, in a letter to Adam Sedgwick, dated April 18, 1905.<sup class="reference" id="_ref-1">[4]</sup> Bateson promoted the term &quot;genetics&quot; publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.<sup class="reference" id="_ref-bateson_genetics_0">[5]</sup></p>
<p>In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 <font color="#0066cc">Thomas Hunt Morgan</font> argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student <font color="#0066cc">Alfred Sturtevant</font> used the phenomenon of <font color="#0066cc">genetic linkage</font> and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.</p>
+
<p>In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 Thomas Hunt Morgan argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student Alfred Sturtevant used the phenomenon of genetic linkage and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.</p>
 
<div class="thumb tleft">
 
<div class="thumb tleft">
<div class="thumbinner" style="WIDTH: 302px"><a class="internal" title="The chemical structure of DNA." href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg"><img class="thumbimage" height="350" alt="The chemical structure of DNA." width="300" longdesc="/wiki/Image:DNA_chemical_structure.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/DNA_chemical_structure.svg/300px-DNA_chemical_structure.svg.png" /></a>
+
<div class="thumbinner" style="width: 302px;"><a class="internal" title="The chemical structure of DNA." href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg"><img height="350" width="300" class="thumbimage" alt="The chemical structure of DNA." longdesc="/wiki/Image:DNA_chemical_structure.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/DNA_chemical_structure.svg/300px-DNA_chemical_structure.svg.png" /></a>
 
<div class="thumbcaption">
 
<div class="thumbcaption">
<div class="magnify" style="FLOAT: right"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>
+
<div class="magnify" style="float: right;"><a class="internal" title="Enlarge" href="http://en.wikipedia.org/wiki/Image:DNA_chemical_structure.svg"><img height="11" width="15" alt="" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" /></a></div>
 
The chemical structure of DNA.</div>
 
The chemical structure of DNA.</div>
 
</div>
 
</div>
 
</div>
 
</div>
<p>Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith"><font color="#0066cc">Frederick Griffith</font></a> published his discovery of the phenomenon of <a title="Transformation (genetics)" href="http://en.wikipedia.org/wiki/Transformation_%28genetics%29"><font color="#0066cc">transformation</font></a> (see <a title="Griffith's experiment" href="http://en.wikipedia.org/wiki/Griffith%27s_experiment"><font color="#0066cc">Griffith's experiment</font></a>); sixteen years later, in 1944, <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery"><font color="#0066cc">Oswald Theodore Avery</font></a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod"><font color="#0066cc">Colin McLeod</font></a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty"><font color="#0066cc">Maclyn McCarty</font></a> used this phenomenon to isolate and identify the molecule responsible for transformation as DNA<sup class="reference" id="_ref-dna_transforming_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming"><font color="#0066cc">[6]</font></a></sup>. The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment"><font color="#0066cc">Hershey-Chase experiment</font></a> in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance.</p>
+
<p>Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, Frederick Griffith published his discovery of the phenomenon of transformation (see Griffith's experiment); sixteen years later, in 1944, Oswald Theodore Avery, Colin McLeod and Maclyn McCarty used this phenomenon to isolate and identify the molecule responsible for transformation as DNA<sup class="reference" id="_ref-dna_transforming_0">[6]</sup>. The Hershey-Chase experiment in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance <a rel="dofollow" href="http://www.auto-tip.ro/dezmembrari-auto" title="dezmembrari auto"><img hspace="2" border="0" vspace="2" src="http://www.all-auto.ro/img/a%20auto" alt="dezmembrari auto" /></a> .</p>
<p><a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson"><font color="#0066cc">James D. Watson</font></a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick"><font color="#0066cc">Francis Crick</font></a> resolved the structure of DNA in 1953, using <a title="X-ray crystallography" href="http://en.wikipedia.org/wiki/X-ray_crystallography"><font color="#0066cc">X-ray crystallography</font></a> information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a &quot;complement&quot; on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: <em>&quot;It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.&quot;</em></p>
+
<p>James D. Watson and Francis Crick resolved the structure of DNA in 1953, using X-ray crystallography information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a &quot;complement&quot; on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: <em>&quot;It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.&quot;</em></p>
<p>In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of <a title="DNA sequencing" href="http://en.wikipedia.org/wiki/DNA_sequencing"><font color="#0066cc">DNA sequencing</font></a> in 1977 enabled the determination of nucleotide sequences on DNA,<sup class="reference" id="_ref-sanger_sequencing_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing"><font color="#0066cc">[7]</font></a></sup> and the <a title="PCR" href="http://en.wikipedia.org/wiki/PCR"><font color="#0066cc">PCR</font></a> method developed by <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis"><font color="#0066cc">Kary Banks Mullis</font></a> in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><font color="#0066cc">Human Genome Project</font></a> and parallel private effort by <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics"><font color="#0066cc">Celera Genomics</font></a>, culminated in the sequencing of the human <a title="Genome" href="http://en.wikipedia.org/wiki/Genome"><font color="#0066cc">genome</font></a> in 2001.</p>
+
<p>In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of DNA sequencing in 1977 enabled the determination of nucleotide sequences on DNA,<sup class="reference" id="_ref-sanger_sequencing_0">[7]</sup> and the PCR method developed by Kary Banks Mullis in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the Human Genome Project and parallel private effort by Celera Genomics, culminated in the sequencing of the human genome in 2001.</p>
 
<p><a id="Timeline_of_notable_discoveries" name="Timeline_of_notable_discoveries"></a></p>
 
<p><a id="Timeline_of_notable_discoveries" name="Timeline_of_notable_discoveries"></a></p>
 
<h3><span class="mw-headline">Timeline of notable discoveries</span></h3>
 
<h3><span class="mw-headline">Timeline of notable discoveries</span></h3>
 
<ul>
 
<ul>
     <li><a title="1865" href="http://en.wikipedia.org/wiki/1865"><font color="#0066cc">1865</font></a> <a title="Gregor Mendel" href="http://en.wikipedia.org/wiki/Gregor_Mendel"><font color="#0066cc">Gregor Mendel</font></a>'s paper, <em><a title="Experiments on Plant Hybridization" href="http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization"><font color="#0066cc">Experiments on Plant Hybridization</font></a></em><sup class="reference" id="_ref-mendel_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-mendel"><font color="#0066cc">[3]</font></a></sup> </li>
+
     <li>1865 Gregor Mendel's paper, <em>Experiments on Plant Hybridization</em><sup class="reference" id="_ref-mendel_1">[3]</sup></li>
     <li><a title="1869" href="http://en.wikipedia.org/wiki/1869"><font color="#0066cc">1869</font></a> <a title="Friedrich Miescher" href="http://en.wikipedia.org/wiki/Friedrich_Miescher"><font color="#0066cc">Friedrich Miescher</font></a> discovers a weak acid in the nuclei of <a title="Leukocyte" href="http://en.wikipedia.org/wiki/Leukocyte"><font color="#0066cc">white blood cells</font></a> that today we call <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a><sup class="reference" id="_ref-Hartl_and_Jones_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-Hartl_and_Jones"><font color="#0066cc">[1]</font></a></sup> </li>
+
    <li>1869 Friedrich Miescher discovers a weak acid in the nuclei of white blood cells that today we call DNA<sup class="reference" id="_ref-Hartl_and_Jones_1">[1]</sup></li>
     <li><a title="1880" href="http://en.wikipedia.org/wiki/1880"><font color="#0066cc">1880</font></a>-<a title="1890" href="http://en.wikipedia.org/wiki/1890"><font color="#0066cc">1890</font></a> <a title="Walther Flemming" href="http://en.wikipedia.org/wiki/Walther_Flemming"><font color="#0066cc">Walther Flemming</font></a>, <a title="Eduard Strasburger" href="http://en.wikipedia.org/wiki/Eduard_Strasburger"><font color="#0066cc">Eduard Strasburger</font></a>, and <a title="Edouard van Beneden" href="http://en.wikipedia.org/wiki/Edouard_van_Beneden"><font color="#0066cc">Edouard van Beneden</font></a> elucidate chromosome distribution during cell division </li>
+
    <li>1880-1890 Walther Flemming, Eduard Strasburger, and Edouard van Beneden elucidate chromosome distribution during cell division</li>
     <li><a title="1903" href="http://en.wikipedia.org/wiki/1903"><font color="#0066cc">1903</font></a> <a title="Walter Sutton" href="http://en.wikipedia.org/wiki/Walter_Sutton"><font color="#0066cc">Walter Sutton</font></a> hypothesizes that chromosomes, which segregate in a Mendelian fashion, are hereditary units<sup class="reference" id="_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><font color="#0066cc">[8]</font></a></sup> </li>
+
    <li>1903 Walter Sutton hypothesizes that chromosomes, which segregate in a Mendelian fashion, are hereditary units<sup class="reference" id="_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0">[8]</sup></li>
     <li><a title="1906" href="http://en.wikipedia.org/wiki/1906"><font color="#0066cc">1906</font></a> The term &quot;genetics&quot; is proposed by the British biologist <a title="William Bateson" href="http://en.wikipedia.org/wiki/William_Bateson"><font color="#0066cc">William Bateson</font></a><sup class="reference" id="_ref-bateson_genetics_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-bateson_genetics"><font color="#0066cc">[5]</font></a></sup> </li>
+
    <li>1906 The term &quot;genetics&quot; is proposed by the British biologist William Bateson<sup class="reference" id="_ref-bateson_genetics_1">[5]</sup></li>
     <li><a title="1910" href="http://en.wikipedia.org/wiki/1910"><font color="#0066cc">1910</font></a> <a title="Thomas Hunt Morgan" href="http://en.wikipedia.org/wiki/Thomas_Hunt_Morgan"><font color="#0066cc">Thomas Hunt Morgan</font></a> shows that genes reside on chromosomes, and discovered linked genes on chromosomes that do not follow Mendel's law of independent allele segregation </li>
+
     <li>1910 Thomas Hunt Morgan shows that genes reside on chromosomes, and discovered linked genes on chromosomes that do not follow Mendel's law of independent allele segregation</li>
    <li><a title="1913" href="http://en.wikipedia.org/wiki/1913"><font color="#0066cc">1913</font></a> <a title="Alfred Sturtevant" href="http://en.wikipedia.org/wiki/Alfred_Sturtevant"><font color="#0066cc">Alfred Sturtevant</font></a> makes the first <a title="Genetic map" href="http://en.wikipedia.org/wiki/Genetic_map"><font color="#0066cc">genetic map</font></a> of a chromosome, showing genes are linearly arranged </li>
+
    <li>1913 Alfred Sturtevant makes the first genetic map of a chromosome, showing genes are linearly arranged</li>
    <li><a title="1918" href="http://en.wikipedia.org/wiki/1918"><font color="#0066cc">1918</font></a> <a title="Ronald Fisher" href="http://en.wikipedia.org/wiki/Ronald_Fisher"><font color="#0066cc">Ronald Fisher</font></a> publishes &quot;<a title="The Correlation Between Relatives on the Supposition of Mendelian Inheritance" href="http://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance"><font color="#0066cc">The Correlation Between Relatives on the Supposition of Mendelian Inheritance</font></a>&quot; the <a title="Modern synthesis" href="http://en.wikipedia.org/wiki/Modern_synthesis"><font color="#0066cc">modern synthesis</font></a> starts. </li>
+
    <li>1918 Ronald Fisher publishes &quot;The Correlation Between Relatives on the Supposition of Mendelian Inheritance&quot; the modern synthesis starts.</li>
    <li><a title="1928" href="http://en.wikipedia.org/wiki/1928"><font color="#0066cc">1928</font></a> <a title="Frederick Griffith" href="http://en.wikipedia.org/wiki/Frederick_Griffith"><font color="#0066cc">Frederick Griffith</font></a> discovers a hereditary molecule that is transmissible between bacteria (see <a title="Griffiths experiment" href="http://en.wikipedia.org/wiki/Griffiths_experiment"><font color="#0066cc">Griffiths experiment</font></a>) </li>
+
    <li>1928 Frederick Griffith discovers a hereditary molecule that is transmissible between bacteria (see Griffiths experiment)</li>
    <li><a title="1931" href="http://en.wikipedia.org/wiki/1931"><font color="#0066cc">1931</font></a> <a title="Crossing over" href="http://en.wikipedia.org/wiki/Crossing_over"><font color="#0066cc">Crossing over</font></a> is the cause of <a title="Recombination" href="http://en.wikipedia.org/wiki/Recombination"><font color="#0066cc">recombination</font></a> (see <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock"><font color="#0066cc">Barbara McClintock</font></a> and <a title="Cytogenetics" href="http://en.wikipedia.org/wiki/Cytogenetics"><font color="#0066cc">cytogenetics</font></a>) </li>
+
    <li>1931 Crossing over is the cause of recombination (see Barbara McClintock and cytogenetics)</li>
    <li><a title="1941" href="http://en.wikipedia.org/wiki/1941"><font color="#0066cc">1941</font></a> <a title="Edward Lawrie Tatum" href="http://en.wikipedia.org/wiki/Edward_Lawrie_Tatum"><font color="#0066cc">Edward Lawrie Tatum</font></a> and <a title="George Wells Beadle" href="http://en.wikipedia.org/wiki/George_Wells_Beadle"><font color="#0066cc">George Wells Beadle</font></a> show that genes code for <a title="Protein" href="http://en.wikipedia.org/wiki/Protein"><font color="#0066cc">proteins</font></a><sup class="reference" id="_ref-2"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-2"><font color="#0066cc">[9]</font></a></sup> </li>
+
    <li>1941 Edward Lawrie Tatum and George Wells Beadle show that genes code for proteins<sup class="reference" id="_ref-2">[9]</sup></li>
    <li><a title="1944" href="http://en.wikipedia.org/wiki/1944"><font color="#0066cc">1944</font></a> <a title="Oswald Theodore Avery" href="http://en.wikipedia.org/wiki/Oswald_Theodore_Avery"><font color="#0066cc">Oswald Theodore Avery</font></a>, <a title="Colin McLeod" href="http://en.wikipedia.org/wiki/Colin_McLeod"><font color="#0066cc">Colin McLeod</font></a> and <a title="Maclyn McCarty" href="http://en.wikipedia.org/wiki/Maclyn_McCarty"><font color="#0066cc">Maclyn McCarty</font></a> isolate <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a> as the genetic material (at that time called <a title="Transforming principle" href="http://en.wikipedia.org/wiki/Transforming_principle"><font color="#0066cc">transforming principle</font></a>)<sup class="reference" id="_ref-dna_transforming_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-dna_transforming"><font color="#0066cc">[6]</font></a></sup> </li>
+
     <li>1944 Oswald Theodore Avery, Colin McLeod and Maclyn McCarty isolate DNA as the genetic material (at that time called transforming principle)<sup class="reference" id="_ref-dna_transforming_1">[6]</sup></li>
    <li><a title="1950" href="http://en.wikipedia.org/wiki/1950"><font color="#0066cc">1950</font></a> <a title="Erwin Chargaff" href="http://en.wikipedia.org/wiki/Erwin_Chargaff"><font color="#0066cc">Erwin Chargaff</font></a> shows that the four nucleotides are not present in nucleic acids in stable proportions, but that some general rules appear to hold (e.g., the nucleotide bases Adenine-Thymine and Cytosine-Guanine always remain in equal proportions). </li>
+
    <li>1950 Erwin Chargaff shows that the four nucleotides are not present in nucleic acids in stable proportions, but that some general rules appear to hold (e.g., the nucleotide bases Adenine-Thymine and Cytosine-Guanine always remain in equal proportions).</li>
    <li><a title="1950" href="http://en.wikipedia.org/wiki/1950"><font color="#0066cc">1950</font></a> <a title="Barbara McClintock" href="http://en.wikipedia.org/wiki/Barbara_McClintock"><font color="#0066cc">Barbara McClintock</font></a> discovers <a title="Transposon" href="http://en.wikipedia.org/wiki/Transposon"><font color="#0066cc">transposons</font></a> in <a title="Maize" href="http://en.wikipedia.org/wiki/Maize"><font color="#0066cc">maize</font></a> </li>
+
    <li>1950 Barbara McClintock discovers transposons in maize</li>
    <li><a title="1952" href="http://en.wikipedia.org/wiki/1952"><font color="#0066cc">1952</font></a> The <a title="Hershey-Chase experiment" href="http://en.wikipedia.org/wiki/Hershey-Chase_experiment"><font color="#0066cc">Hershey-Chase experiment</font></a> proves the genetic information of <a title="Phage" href="http://en.wikipedia.org/wiki/Phage"><font color="#0066cc">phages</font></a> (and all other organisms) to be DNA </li>
+
    <li>1952 The Hershey-Chase experiment proves the genetic information of phages (and all other organisms) to be DNA</li>
    <li><a title="1953" href="http://en.wikipedia.org/wiki/1953"><font color="#0066cc">1953</font></a> DNA structure is resolved to be a <a title="Double helix" href="http://en.wikipedia.org/wiki/Double_helix"><font color="#0066cc">double helix</font></a> by <a title="James D. Watson" href="http://en.wikipedia.org/wiki/James_D._Watson"><font color="#0066cc">James D. Watson</font></a> and <a title="Francis Crick" href="http://en.wikipedia.org/wiki/Francis_Crick"><font color="#0066cc">Francis Crick</font></a>, with the help of <a title="Rosalind Franklin" href="http://en.wikipedia.org/wiki/Rosalind_Franklin"><font color="#0066cc">Rosalind Franklin</font></a><sup class="reference" id="_ref-3"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-3"><font color="#0066cc">[10]</font></a></sup> </li>
+
    <li>1953 DNA structure is resolved to be a double helix by James D. Watson and Francis Crick, with the help of Rosalind Franklin<sup class="reference" id="_ref-3">[10]</sup></li>
    <li><a title="1956" href="http://en.wikipedia.org/wiki/1956"><font color="#0066cc">1956</font></a> <a title="Joe Hin Tjio" href="http://en.wikipedia.org/wiki/Joe_Hin_Tjio"><font color="#0066cc">Joe Hin Tjio</font></a> and <a title="Albert Levan" href="http://en.wikipedia.org/wiki/Albert_Levan"><font color="#0066cc">Albert Levan</font></a> established the correct chromosome number in humans to be 46 </li>
+
    <li>1956 Joe Hin Tjio and Albert Levan established the correct chromosome number in humans to be 46</li>
    <li><a title="1958" href="http://en.wikipedia.org/wiki/1958"><font color="#0066cc">1958</font></a> The <a title="Meselson-Stahl experiment" href="http://en.wikipedia.org/wiki/Meselson-Stahl_experiment"><font color="#0066cc">Meselson-Stahl experiment</font></a> demonstrates that DNA is <a title="Semiconservative replication" href="http://en.wikipedia.org/wiki/Semiconservative_replication"><font color="#0066cc">semiconservatively replicated</font></a><sup class="reference" id="_ref-4"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-4"><font color="#0066cc">[11]</font></a></sup> </li>
+
    <li>1958 The Meselson-Stahl experiment demonstrates that DNA is semiconservatively replicated<sup class="reference" id="_ref-4">[11]</sup></li>
    <li><a title="1961" href="http://en.wikipedia.org/wiki/1961"><font color="#0066cc">1961</font></a> The <a title="Genetic code" href="http://en.wikipedia.org/wiki/Genetic_code"><font color="#0066cc">genetic code</font></a> is arranged in triplets </li>
+
    <li>1961 The genetic code is arranged in triplets</li>
    <li><a title="1964" href="http://en.wikipedia.org/wiki/1964"><font color="#0066cc">1964</font></a> <a title="Howard Temin" href="http://en.wikipedia.org/wiki/Howard_Temin"><font color="#0066cc">Howard Temin</font></a> showed using <a title="RNA virus" href="http://en.wikipedia.org/wiki/RNA_virus"><font color="#0066cc">RNA viruses</font></a> that Watson's <a title="Central dogma" href="http://en.wikipedia.org/wiki/Central_dogma"><font color="#0066cc">central dogma</font></a> is not always true </li>
+
     <li>1964 Howard Temin showed using RNA viruses that Watson's central dogma is not always true</li>
    <li><a title="1970" href="http://en.wikipedia.org/wiki/1970"><font color="#0066cc">1970</font></a> <a title="Restriction enzymes" href="http://en.wikipedia.org/wiki/Restriction_enzymes"><font color="#0066cc">Restriction enzymes</font></a> were discovered in studies of a bacterium, <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae"><font color="#0066cc">Haemophilus influenzae</font></a></em>, enabling scientists to cut and paste DNA </li>
+
    <li>1970 Restriction enzymes were discovered in studies of a bacterium, <em>Haemophilus influenzae</em>, enabling scientists to cut and paste DNA</li>
    <li><a title="1972" href="http://en.wikipedia.org/wiki/1972"><font color="#0066cc">1972</font></a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers"><font color="#0066cc">Walter Fiers</font></a> and his team at the Laboratory of Molecular Biology of the <a title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent"><font color="#0066cc">University of Ghent</font></a> (<a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent"><font color="#0066cc">Ghent</font></a>, <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium"><font color="#0066cc">Belgium</font></a>) were the first to determine the sequence of a gene: the gene for <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2"><font color="#0066cc">Bacteriophage MS2</font></a> coat protein<sup class="reference" id="_ref-5"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-5"><font color="#0066cc">[12]</font></a></sup>. </li>
+
    <li>1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein<sup class="reference" id="_ref-5">[12]</sup>.</li>
    <li><a title="1976" href="http://en.wikipedia.org/wiki/1976"><font color="#0066cc">1976</font></a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers"><font color="#0066cc">Walter Fiers</font></a> and his team determine the complete nucleotide-sequence of <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2"><font color="#0066cc">Bacteriophage MS2</font></a>-RNA<sup class="reference" id="_ref-6"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-6"><font color="#0066cc">[13]</font></a></sup> </li>
+
     <li>1976, Walter Fiers and his team determine the complete nucleotide-sequence of Bacteriophage MS2-RNA<sup class="reference" id="_ref-6">[13]</sup></li>
    <li><a title="1977" href="http://en.wikipedia.org/wiki/1977"><font color="#0066cc">1977</font></a> DNA is <a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing"><font color="#0066cc">sequenced</font></a> for the first time by <a title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger"><font color="#0066cc">Fred Sanger</font></a>, <a title="Walter Gilbert" href="http://en.wikipedia.org/wiki/Walter_Gilbert"><font color="#0066cc">Walter Gilbert</font></a>, and <a title="Allan Maxam" href="http://en.wikipedia.org/wiki/Allan_Maxam"><font color="#0066cc">Allan Maxam</font></a> working independently. Sanger's lab complete the entire genome of sequence of <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage"><font color="#0066cc">Bacteriophage</font></a> <a title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage"><font color="#0066cc">&Phi;-X174</font></a><sup class="reference" id="_ref-sanger_sequencing_1"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-sanger_sequencing"><font color="#0066cc">[7]</font></a></sup>. </li>
+
    <li>1977 DNA is sequenced for the first time by Fred Sanger, Walter Gilbert, and Allan Maxam working independently. Sanger's lab complete the entire genome of sequence of Bacteriophage &Phi;-X174<sup class="reference" id="_ref-sanger_sequencing_1">[7]</sup>.</li>
    <li><a title="1983" href="http://en.wikipedia.org/wiki/1983"><font color="#0066cc">1983</font></a> <a title="Kary Banks Mullis" href="http://en.wikipedia.org/wiki/Kary_Banks_Mullis"><font color="#0066cc">Kary Banks Mullis</font></a> discovers the <a title="Polymerase chain reaction" href="http://en.wikipedia.org/wiki/Polymerase_chain_reaction"><font color="#0066cc">polymerase chain reaction</font></a> enabling the easy amplification of DNA </li>
+
    <li>1983 Kary Banks Mullis discovers the polymerase chain reaction enabling the easy amplification of DNA</li>
    <li><a title="1985" href="http://en.wikipedia.org/wiki/1985"><font color="#0066cc">1985</font></a> <a title="Alec Jeffreys" href="http://en.wikipedia.org/wiki/Alec_Jeffreys"><font color="#0066cc">Alec Jeffreys</font></a> discovers genetic finger printing. </li>
+
    <li>1985 Alec Jeffreys discovers genetic finger printing.</li>
    <li><a title="1989" href="http://en.wikipedia.org/wiki/1989"><font color="#0066cc">1989</font></a> The first human gene is sequenced by <a title="Francis Collins" href="http://en.wikipedia.org/wiki/Francis_Collins"><font color="#0066cc">Francis Collins</font></a> and <a title="Lap-Chee Tsui" href="http://en.wikipedia.org/wiki/Lap-Chee_Tsui"><font color="#0066cc">Lap-Chee Tsui</font></a>. It encodes the <a title="CFTR" href="http://en.wikipedia.org/wiki/CFTR"><font color="#0066cc">CFTR</font></a> protein. Defects in this gene cause <a title="Cystic fibrosis" href="http://en.wikipedia.org/wiki/Cystic_fibrosis"><font color="#0066cc">cystic fibrosis</font></a> </li>
+
     <li>1989 The first human gene is sequenced by Francis Collins and Lap-Chee Tsui. It encodes the CFTR protein. Defects in this gene cause cystic fibrosis<a title="asigurari auto ieftine" href="http://www.all-auto.ro/asigurari-auto" rel="dofollow"><img hspace="2" border="0" vspace="2" alt="asigurari auto ieftine" src="http://www.all-auto.ro/images/asigurari auto" /></a></li>
    <li><a title="1995" href="http://en.wikipedia.org/wiki/1995"><font color="#0066cc">1995</font></a> The genome of <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae"><font color="#0066cc">Haemophilus influenzae</font></a></em> is the first genome of a free living organism to be sequenced. </li>
+
    <li>1995 The genome of <em>Haemophilus influenzae</em> is the first genome of a free living organism to be sequenced.</li>
    <li><a title="1996" href="http://en.wikipedia.org/wiki/1996"><font color="#0066cc">1996</font></a> Saccharomyces cerevisiae is the first <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote"><font color="#0066cc">eukaryote</font></a> genome sequence to be released </li>
+
    <li>1996 Saccharomyces cerevisiae is the first eukaryote genome sequence to be released</li>
    <li><a title="1998" href="http://en.wikipedia.org/wiki/1998"><font color="#0066cc">1998</font></a> The first genome sequence for a multicellular eukaryote, <em><a title="C. elegans" href="http://en.wikipedia.org/wiki/C._elegans"><font color="#0066cc">C. elegans</font></a></em> is released. </li>
+
    <li>1998 The first genome sequence for a multicellular eukaryote, <em>C. elegans</em> is released.</li>
    <li><a title="2001" href="http://en.wikipedia.org/wiki/2001"><font color="#0066cc">2001</font></a> First draft sequences of the human genome are released simultaneously by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><font color="#0066cc">Human Genome Project</font></a> and <a title="Celera Genomics" href="http://en.wikipedia.org/wiki/Celera_Genomics"><font color="#0066cc">Celera Genomics</font></a>. </li>
+
    <li>2001 First draft sequences of the human genome are released simultaneously by the Human Genome Project and Celera Genomics <a rel="dofollow" href="http://www.auto-tip.ro/piese-auto" title="piese auto"><img hspace="2" border="0" vspace="2" src="http://www.all-auto.ro/img/a%20auto" alt="piese auto" /></a> .</li>
     <li><a title="2003" href="http://en.wikipedia.org/wiki/2003"><font color="#0066cc">2003</font></a> (<a title="April 14" href="http://en.wikipedia.org/wiki/April_14"><font color="#0066cc">14 April</font></a>) Successful completion of <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><font color="#0066cc">Human Genome Project</font></a> with 98% of the genome sequenced to a 99.99% <a title="Accuracy" href="http://en.wikipedia.org/wiki/Accuracy"><font color="#0066cc">accuracy</font></a>.<sup class="reference" id="_ref-7"><a title="" href="http://en.wikipedia.org/wiki/Genetics#_note-7"><font color="#0066cc">[14]</font></a></sup> </li>
+
     <li>2003 (14 April) Successful completion of Human Genome Project with 98% of the genome sequenced to a 99.99% accuracy.<sup class="reference" id="_ref-7">[14]</sup></li>
 
</ul>
 
</ul>
 
<p><a id="Areas_of_genetics" name="Areas_of_genetics"></a></p>
 
<p><a id="Areas_of_genetics" name="Areas_of_genetics"></a></p>
 
<h2><span class="mw-headline">Areas of genetics</span></h2>
 
<h2><span class="mw-headline">Areas of genetics</span></h2>
<p><a id="Classical_genetics" name="Classical_genetics"></a></p>
+
<p>&nbsp;</p>
 
<h3><span class="mw-headline">Classical genetics</span></h3>
 
<h3><span class="mw-headline">Classical genetics</span></h3>
<dl><dd><em>Main articles:</em> <a title="Classical genetics" href="http://en.wikipedia.org/wiki/Classical_genetics"><font color="#0066cc">Classical genetics</font></a>, <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">Mendelian inheritance</font></a> </dd></dl>
+
<dl><dd> <br type="_moz" />
<p>Classical genetics consists of the techniques and methodologies of genetics that predate the advent of <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><font color="#0066cc">molecular biology</font></a>. After the discovery of the genetic code and such tools of <a title="Clone (genetics)" href="http://en.wikipedia.org/wiki/Clone_%28genetics%29"><font color="#0066cc">cloning</font></a> as <a title="Restriction enzyme" href="http://en.wikipedia.org/wiki/Restriction_enzyme"><font color="#0066cc">restriction enzymes</font></a>, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as <a title="Mendelian inheritance" href="http://en.wikipedia.org/wiki/Mendelian_inheritance"><font color="#0066cc">Mendel's laws</font></a> and <a title="Muller's morphs" href="http://en.wikipedia.org/wiki/Muller%27s_morphs"><font color="#0066cc">Muller's morphs</font></a>. Patterns of inheritance still remain a useful tool for the study of <a title="Genetic disease" href="http://en.wikipedia.org/wiki/Genetic_disease"><font color="#0066cc">genetic diseases</font></a>.</p>
+
</dd></dl>
<p><a id="Behavioral_genetics" name="Behavioral_genetics"></a></p>
+
<p>Classical genetics consists of the techniques and methodologies of genetics that predate the advent of molecular biology. After the discovery of the genetic code and such tools of cloning as restriction enzymes, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as Mendel's laws and Muller's morphs. Patterns of inheritance still remain a useful tool for the study of genetic diseases.</p>
 +
<p>&nbsp;</p>
 
<h3><span class="mw-headline">Behavioral genetics</span></h3>
 
<h3><span class="mw-headline">Behavioral genetics</span></h3>
<dl><dd><em>Main article:</em> <a title="Behavioral genetics" href="http://en.wikipedia.org/wiki/Behavioral_genetics"><font color="#0066cc">Behavioral genetics</font></a> </dd></dl>
+
<dl><dd> <br type="_moz" />
<p>Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection"><font color="#0066cc">natural selection</font></a>, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as <a title="Richard Dawkins" href="http://en.wikipedia.org/wiki/Richard_Dawkins"><font color="#0066cc">Richard Dawkins</font></a> and <a title="W. D. Hamilton" href="http://en.wikipedia.org/wiki/W._D._Hamilton"><font color="#0066cc">W. D. Hamilton</font></a> to propose explanations, including the theories of <a title="Kin selection" href="http://en.wikipedia.org/wiki/Kin_selection"><font color="#0066cc">kin selection</font></a> and <a title="Reciprocal altruism" href="http://en.wikipedia.org/wiki/Reciprocal_altruism"><font color="#0066cc">reciprocal altruism</font></a>. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.</p>
+
</dd></dl>
<p><a id="Clinical_genetics" name="Clinical_genetics"></a></p>
+
<p>Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of natural selection, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as Richard Dawkins and W. D. Hamilton to propose explanations, including the theories of kin selection and reciprocal altruism. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.</p>
 +
<p>&nbsp;</p>
 
<h3><span class="mw-headline">Clinical genetics</span></h3>
 
<h3><span class="mw-headline">Clinical genetics</span></h3>
 
<dl><dd>
 
<dl><dd>
<div class="noprint"><em>Main article: <a title="Clinical genetics" href="http://en.wikipedia.org/wiki/Clinical_genetics"><font color="#0066cc">Clinical genetics</font></a></em></div>
+
<div class="noprint">&nbsp;</div>
 
</dd></dl>
 
</dd></dl>
<p><a title="Physician" href="http://en.wikipedia.org/wiki/Physician"><font color="#0066cc">Physicians</font></a> who are trained as Geneticists diagnose, treat, and counsel patients with <a title="Genetic disorder" href="http://en.wikipedia.org/wiki/Genetic_disorder"><font color="#0066cc">genetic disorders</font></a> or <a title="Syndrome" href="http://en.wikipedia.org/wiki/Syndrome"><font color="#0066cc">syndromes</font></a>. These doctors are typically trained in a genetics <a title="Residency (medicine)" href="http://en.wikipedia.org/wiki/Residency_%28medicine%29"><font color="#0066cc">residency</font></a> and/or <a title="Fellowship" href="http://en.wikipedia.org/wiki/Fellowship"><font color="#0066cc">fellowship</font></a>.</p>
+
<p>Physicians who are trained as Geneticists diagnose, treat, and counsel patients with genetic disorders or syndromes. These doctors are typically trained in a genetics residency and/or fellowship.</p>
 
<p>Clinical genetics is also the study of genetic causes of clinical diseases.</p>
 
<p>Clinical genetics is also the study of genetic causes of clinical diseases.</p>
<p><a id="Molecular_genetics" name="Molecular_genetics"></a></p>
+
<p>&nbsp;</p>
 
<h3><span class="mw-headline">Molecular genetics</span></h3>
 
<h3><span class="mw-headline">Molecular genetics</span></h3>
 
<dl><dd>
 
<dl><dd>
<div class="noprint"><em>Main article: <a title="Molecular genetics" href="http://en.wikipedia.org/wiki/Molecular_genetics"><font color="#0066cc">Molecular genetics</font></a></em></div>
+
<div class="noprint">&nbsp;</div>
 
</dd></dl>
 
</dd></dl>
<p>Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule"><font color="#0066cc">molecular</font></a> level. Molecular genetics employs the methods of both classical genetics (such as <a title="Hybridization" href="http://en.wikipedia.org/wiki/Hybridization"><font color="#0066cc">hybridization</font></a>) and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><font color="#0066cc">molecular biology</font></a>. It is so-called to differentiate it from other sub fields of genetics such as <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics"><font color="#0066cc">ecological genetics</font></a> and <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics"><font color="#0066cc">population genetics</font></a>. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct <a title="Scientific classification" href="http://en.wikipedia.org/wiki/Scientific_classification"><font color="#0066cc">scientific classification</font></a> of organisms: this is called <a title="Molecular systematics" href="http://en.wikipedia.org/wiki/Molecular_systematics"><font color="#0066cc">molecular systematics</font></a>. The study of inherited features not strictly associated with changes in the <a title="DNA" href="http://en.wikipedia.org/wiki/DNA"><font color="#0066cc">DNA</font></a> sequence is called <a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics"><font color="#0066cc">epigenetics</font></a>.</p>
+
<p>Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a molecular level. Molecular genetics employs the methods of both classical genetics (such as hybridization) and molecular biology. It is so-called to differentiate it from other sub fields of genetics such as ecological genetics and population genetics. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct scientific classification of organisms: this is called molecular systematics. The study of inherited features not strictly associated with changes in the DNA sequence is called epigenetics.</p>
<p>Some take the view that <a title="Life" href="http://en.wikipedia.org/wiki/Life"><font color="#0066cc">life</font></a> can be defined, in <a title="Molecule" href="http://en.wikipedia.org/wiki/Molecule"><font color="#0066cc">molecular</font></a> terms, as the set of strategies which <a title="RNA" href="http://en.wikipedia.org/wiki/RNA"><font color="#0066cc">RNA</font></a> polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the <a title="Origin of life" href="http://en.wikipedia.org/wiki/Origin_of_life"><font color="#0066cc">origin of life</font></a>, specifically the <a title="RNA world hypothesis" href="http://en.wikipedia.org/wiki/RNA_world_hypothesis"><font color="#0066cc">RNA world hypothesis</font></a>.</p>
+
<p>Some take the view that life can be defined, in molecular terms, as the set of strategies which RNA polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the origin of life, specifically the RNA world hypothesis.</p>
<p><a id="Population.2C_quantitative_and_ecological_genetics" name="Population.2C_quantitative_and_ecological_genetics"></a></p>
+
<p>&nbsp;</p>
 
<h3><span class="mw-headline">Population, quantitative and ecological genetics</span></h3>
 
<h3><span class="mw-headline">Population, quantitative and ecological genetics</span></h3>
<dl><dd><em>Main articles:</em> <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics"><font color="#0066cc">Population genetics</font></a>, <a title="Quantitative genetics" href="http://en.wikipedia.org/wiki/Quantitative_genetics"><font color="#0066cc">Quantitative genetics</font></a>, <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics"><font color="#0066cc">Ecological genetics</font></a> </dd></dl>
+
<dl><dd> <br type="_moz" />
<p>Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying <a title="Population" href="http://en.wikipedia.org/wiki/Population"><font color="#0066cc">populations</font></a> of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in <a title="Allele frequency" href="http://en.wikipedia.org/wiki/Allele_frequency"><font color="#0066cc">allele frequencies</font></a> of genes under the influence of the four evolutionary forces: <a title="Natural selection" href="http://en.wikipedia.org/wiki/Natural_selection"><font color="#0066cc">natural selection</font></a>, <a title="Genetic drift" href="http://en.wikipedia.org/wiki/Genetic_drift"><font color="#0066cc">genetic drift</font></a>, <a title="Mutation" href="http://en.wikipedia.org/wiki/Mutation"><font color="#0066cc">mutation</font></a> and <a title="Migration" href="http://en.wikipedia.org/wiki/Migration"><font color="#0066cc">migration</font></a>. It is the theory that attempts to explain such phenomena as <a title="Adaptation (biology)" href="http://en.wikipedia.org/wiki/Adaptation_%28biology%29"><font color="#0066cc">adaptation</font></a> and <a title="Speciation" href="http://en.wikipedia.org/wiki/Speciation"><font color="#0066cc">speciation</font></a>.</p>
+
</dd></dl>
<p>The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to <a title="Selection" href="http://en.wikipedia.org/wiki/Selection"><font color="#0066cc">selection</font></a> given data on the <a title="Phenotype" href="http://en.wikipedia.org/wiki/Phenotype"><font color="#0066cc">phenotype</font></a> and relationships of individuals. A more recent development of quantitative genetics is the analysis of <a title="Quantitative trait loci" href="http://en.wikipedia.org/wiki/Quantitative_trait_loci"><font color="#0066cc">quantitative trait loci</font></a>. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the <a title="Chromosome" href="http://en.wikipedia.org/wiki/Chromosome"><font color="#0066cc">chromosome</font></a> requires accurate phenotypic, pedigree and marker data from a large number of related individuals.</p>
+
<p>Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying populations of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in allele frequencies of genes under the influence of the four evolutionary forces: natural selection, genetic drift, mutation and migration. It is the theory that attempts to explain such phenomena as adaptation and speciation.</p>
<p>Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on <a title="Ecology" href="http://en.wikipedia.org/wiki/Ecology"><font color="#0066cc">ecological</font></a> issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.</p>
+
<p>The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to selection given data on the phenotype and relationships of individuals. A more recent development of quantitative genetics is the analysis of quantitative trait loci. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the chromosome requires accurate phenotypic, pedigree and marker data from a large number of related individuals.</p>
<p>Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of <a title="Mendelian randomization" href="http://en.wikipedia.org/wiki/Mendelian_randomization"><font color="#0066cc">Mendelian randomization</font></a>.</p>
+
<p>Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on ecological issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.</p>
 +
<p>Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of Mendelian randomization.</p>
 
<p><a id="Genomics" name="Genomics"></a></p>
 
<p><a id="Genomics" name="Genomics"></a></p>
 
<h3><span class="mw-headline">Genomics</span></h3>
 
<h3><span class="mw-headline">Genomics</span></h3>
 
<dl><dd>
 
<dl><dd>
<div class="noprint"><em>Main article: <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics"><font color="#0066cc">Genomics</font></a></em></div>
+
<div class="noprint">&nbsp;</div>
 
</dd></dl>
 
</dd></dl>
<p>A more recent development is the rise of <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics"><font color="#0066cc">genomics</font></a>, which attempts the study of large-scale genetic patterns across the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome"><font color="#0066cc">genome</font></a> for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and <a title="Sequence profiling tool" href="http://en.wikipedia.org/wiki/Sequence_profiling_tool"><font color="#0066cc">Sequence profiling tool</font></a> using <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics"><font color="#0066cc">bioinformatics</font></a> approaches for analysis of large sets of data.</p>
+
<p>A more recent development is the rise of genomics, which attempts the study of large-scale genetic patterns across the genome for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and Sequence profiling tool using bioinformatics approaches for analysis of large sets of data.</p>
<p><a id="Closely-related_fields" name="Closely-related_fields"></a></p>
+
<p>&nbsp;</p>
 
<h3><span class="mw-headline">Closely-related fields</span></h3>
 
<h3><span class="mw-headline">Closely-related fields</span></h3>
<p>The science which grew out of the union of <a title="Biochemistry" href="http://en.wikipedia.org/wiki/Biochemistry"><font color="#0066cc">biochemistry</font></a> and genetics is widely known as <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><font color="#0066cc">molecular biology</font></a>. The term &quot;genetics&quot; is often widely conflated with the notion of <a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering"><font color="#0066cc">genetic engineering</font></a>, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see <a title="Population genetics" href="http://en.wikipedia.org/wiki/Population_genetics"><font color="#0066cc">population genetics</font></a> and <a title="Ecological genetics" href="http://en.wikipedia.org/wiki/Ecological_genetics"><font color="#0066cc">ecological genetics</font></a>), rather than genetic engineering.</p>
+
<p>The science which grew out of the union of biochemistry and genetics is widely known as molecular biology. The term &quot;genetics&quot; is often widely conflated with the notion of genetic engineering, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see population genetics and ecological genetics), rather than genetic engineering.</p>
<p><a id="References" name="References"></a></p>
+
<p>&nbsp;</p>
 
<h2><span class="mw-headline">References</span></h2>
 
<h2><span class="mw-headline">References</span></h2>
 
<ol class="references">
 
<ol class="references">
     <li id="_note-Hartl_and_Jones">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-Hartl_and_Jones_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite class="book" style="FONT-STYLE: normal">Daniel Hartl and Elizabeth Jones (2005). <em>Genetics: Analysis of Genes and Genomes, 6th edition</em>. Jones &amp; Bartlett.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.title=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.au=Daniel+Hartl+and+Elizabeth+Jones&amp;rft.date=2005&amp;rft.pub=Jones+%26+Bartlett">&nbsp;</span> 854 pages. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0763715115"><font color="#0066cc">ISBN 0-7637-1511-5</font></a>. </li>
+
     <li id="_note-Hartl_and_Jones">^ <sup><em><strong>a</strong></em></sup> <sup><em><strong>b</strong></em></sup> <cite class="book" style="font-style: normal;">Daniel Hartl and Elizabeth Jones (2005). <em>Genetics: Analysis of Genes and Genomes, 6th edition</em>. Jones &amp; Bartlett.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.title=Genetics%3A+Analysis+of+Genes+and+Genomes%2C+6th+edition&amp;rft.au=Daniel+Hartl+and+Elizabeth+Jones&amp;rft.date=2005&amp;rft.pub=Jones+%26+Bartlett">&nbsp;</span> 854 pages. ISBN 0-7637-1511-5.</li>
     <li id="_note-0"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-0"><font color="#0066cc">^</font></a></strong> <cite class="book" style="FONT-STYLE: normal">Robert C. King, Willliam D. Stansfield, Pamela K. Mulligan (2006). <em>A Dictionary of Genetics, 7th edition</em>. New York: Oxford University Press.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.title=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.au=Robert+C.+King%2C+Willliam+D.+Stansfield%2C+Pamela+K.+Mulligan&amp;rft.date=2006&amp;rft.pub=Oxford+University+Press&amp;rft.place=New+York">&nbsp;</span> 596 pages. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0195307615"><font color="#0066cc">ISBN 0-19-530761-5</font></a> (paper). </li>
+
     <li id="_note-0"><strong>^</strong> <cite class="book" style="font-style: normal;">Robert C. King, Willliam D. Stansfield, Pamela K. Mulligan (2006). <em>A Dictionary of Genetics, 7th edition</em>. New York: Oxford University Press.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.title=A+Dictionary+of+Genetics%2C+7th+edition&amp;rft.au=Robert+C.+King%2C+Willliam+D.+Stansfield%2C+Pamela+K.+Mulligan&amp;rft.date=2006&amp;rft.pub=Oxford+University+Press&amp;rft.place=New+York">&nbsp;</span> 596 pages. ISBN 0-19-530761-5 (paper).</li>
    <li id="_note-mendel">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-mendel_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite style="FONT-STYLE: normal">Mendel, G.. &quot;Versuche &uuml;ber Pflanzen-Hybriden&quot;. <em>Verh. Naturforsch. Ver. Br&uuml;nn</em> <strong>4</strong>: 3-47.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Versuche+%C3%BCber+Pflanzen-Hybriden&amp;rft.title=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.jtitle=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.volume=4&amp;rft.au=Mendel%2C+G.&amp;rft.pages=3-47">&nbsp;</span> (in English in 1901, J. R. Hortic. Soc. 26: 1&ndash;32) </li>
+
    <li id="_note-mendel">^ <sup><em><strong>a</strong></em></sup> <sup><em><strong>b</strong></em></sup> <cite style="font-style: normal;">Mendel, G.. &quot;Versuche &uuml;ber Pflanzen-Hybriden&quot;. <em>Verh. Naturforsch. Ver. Br&uuml;nn</em> <strong>4</strong>: 3-47.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Versuche+%C3%BCber+Pflanzen-Hybriden&amp;rft.title=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.jtitle=Verh.+Naturforsch.+Ver.+Br%C3%BCnn&amp;rft.volume=4&amp;rft.au=Mendel%2C+G.&amp;rft.pages=3-47">&nbsp;</span> (in English in 1901, J. R. Hortic. Soc. 26: 1&ndash;32)</li>
     <li id="_note-1"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-1"><font color="#0066cc">^</font></a></strong> <a class="external text" title="http://www.jic.ac.uk/corporate/about/bateson.htm" rel="nofollow" href="http://www.jic.ac.uk/corporate/about/bateson.htm"><font color="#0066cc">Online copy of William Bateson's letter to Adam Sedgwick</font></a> </li>
+
    <li id="_note-1"><strong>^</strong> Online copy of William Bateson's letter to Adam Sedgwick</li>
    <li id="_note-bateson_genetics">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-bateson_genetics_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite style="FONT-STYLE: normal">Bateson, William (1907). &quot;The Progress of Genetic Research&quot;. Wilks, W. (editor) <em>Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding</em>, London: Royal Horticultural Society.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Report+of+the+Third+1906+International+Conference+on+Genetics%3A+Hybridization+%28the+cross-breeding+of+genera+or+species%29%2C+the+cross-breeding+of+varieties%2C+and+general+plant+breeding&amp;rft.atitle=The+Progress+of+Genetic+Research&amp;rft.au=Bateson%2C+William&amp;rft.date=1907&amp;rft.pub=Royal+Horticultural+Society&amp;rft.place=London">&nbsp;</span> <dl><dd>Although the conference was titled &quot;International Conference on Hybridisation and Plant Breeding&quot;, Wilks changed the title for publication as a result of Bateson's speech. </dd></dl></li>
+
     <li id="_note-bateson_genetics">^ <sup><em><strong>a</strong></em></sup> <sup><em><strong>b</strong></em></sup> <cite style="font-style: normal;">Bateson, William (1907). &quot;The Progress of Genetic Research&quot;. Wilks, W. (editor) <em>Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding</em>, London: Royal Horticultural Society.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Report+of+the+Third+1906+International+Conference+on+Genetics%3A+Hybridization+%28the+cross-breeding+of+genera+or+species%29%2C+the+cross-breeding+of+varieties%2C+and+general+plant+breeding&amp;rft.atitle=The+Progress+of+Genetic+Research&amp;rft.au=Bateson%2C+William&amp;rft.date=1907&amp;rft.pub=Royal+Horticultural+Society&amp;rft.place=London">&nbsp;</span> <dl><dd>Although the conference was titled &quot;International Conference on Hybridisation and Plant Breeding&quot;, Wilks changed the title for publication as a result of Bateson's speech. </dd></dl></li>
    <li id="_note-dna_transforming">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-dna_transforming_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> <cite style="FONT-STYLE: normal">Avery, MacLeod, and McCarty (1944). &quot;Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III&quot;. <em>Journal of Experimental Medicine</em> <strong>79</strong> (1): 137-58.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Studies+on+the+Chemical+Nature+of+the+Substance+Inducing+Transformation+of+Pneumococcal+Types%3A+Induction+of+Transformation+by+a+Desoxyribonucleic+Acid+Fraction+Isolated+from+Pneumococcus+Type+III&amp;rft.title=Journal+of+Experimental+Medicine&amp;rft.jtitle=Journal+of+Experimental+Medicine&amp;rft.date=1944&amp;rft.volume=79&amp;rft.issue=1&amp;rft.au=Avery%2C+MacLeod%2C+and+McCarty&amp;rft.pages=137-58">&nbsp;</span><a class="external text" title="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=33226"><font color="#0066cc">35th anniversary reprint available</font></a> </li>
+
    <li id="_note-dna_transforming">^ <sup><em><strong>a</strong></em></sup> <sup><em><strong>b</strong></em></sup> <cite style="font-style: normal;">Avery, MacLeod, and McCarty (1944). &quot;Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III&quot;. <em>Journal of Experimental Medicine</em> <strong>79</strong> (1): 137-58.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Studies+on+the+Chemical+Nature+of+the+Substance+Inducing+Transformation+of+Pneumococcal+Types%3A+Induction+of+Transformation+by+a+Desoxyribonucleic+Acid+Fraction+Isolated+from+Pneumococcus+Type+III&amp;rft.title=Journal+of+Experimental+Medicine&amp;rft.jtitle=Journal+of+Experimental+Medicine&amp;rft.date=1944&amp;rft.volume=79&amp;rft.issue=1&amp;rft.au=Avery%2C+MacLeod%2C+and+McCarty&amp;rft.pages=137-58">&nbsp;</span>35th anniversary reprint available on <a href="http://www.all-auto.ro/piese-auto">piese auto ieftine</a></li>
     <li id="_note-sanger_sequencing">^ <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_0"><sup><em><strong><font color="#0066cc">a</font></strong></em></sup></a> <a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-sanger_sequencing_1"><sup><em><strong><font color="#0066cc">b</font></strong></em></sup></a> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94 </li>
+
    <li id="_note-sanger_sequencing">^ <sup><em><strong>a</strong></em></sup> <sup><em><strong>b</strong></em></sup> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94</li>
    <li id="_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity_0"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Ernest W. Crow and James F. Crow (2002). &quot;<a class="external text" title="http://www.genetics.org/cgi/content/full/160/1/1" rel="nofollow" href="http://www.genetics.org/cgi/content/full/160/1/1"><font color="#0066cc">100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity</font></a>&quot;. <em>Genetics</em> <strong>160</strong>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=100+Years+Ago%3A+Walter+Sutton+and+the+Chromosome+Theory+of+Heredity&amp;rft.title=Genetics&amp;rft.jtitle=Genetics&amp;rft.date=2002&amp;rft.volume=160&amp;rft.au=Ernest+W.+Crow+and+James+F.+Crow&amp;rft_id=http%3A%2F%2Fwww.genetics.org%2Fcgi%2Fcontent%2Ffull%2F160%2F1%2F1">&nbsp;</span> </li>
+
    <li id="_note-100_Years_Ago:_Walter_Sutton_and_the_Chromosome_Theory_of_Heredity"><strong>^</strong> <cite style="font-style: normal;">Ernest W. Crow and James F. Crow (2002). &quot;100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity&quot;. <em>Genetics</em> <strong>160</strong>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=100+Years+Ago%3A+Walter+Sutton+and+the+Chromosome+Theory+of+Heredity&amp;rft.title=Genetics&amp;rft.jtitle=Genetics&amp;rft.date=2002&amp;rft.volume=160&amp;rft.au=Ernest+W.+Crow+and+James+F.+Crow&amp;rft_id=http%3A%2F%2Fwww.genetics.org%2Fcgi%2Fcontent%2Ffull%2F160%2F1%2F1">&nbsp;</span></li>
     <li id="_note-2"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-2"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Beadle GW, Tatum EL (1941). &quot;Genetic control of biochemical reactions in neurospora&quot;. <em>PNAS</em> <strong>27</strong>: 499-506.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Genetic+control+of+biochemical+reactions+in+neurospora&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1941&amp;rft.volume=27&amp;rft.au=Beadle+GW%2C+Tatum+EL&amp;rft.pages=499-506">&nbsp;</span> </li>
+
     <li id="_note-2"><strong>^</strong> <cite style="font-style: normal;">Beadle GW, Tatum EL (1941). &quot;Genetic control of biochemical reactions in neurospora&quot;. <em>PNAS</em> <strong>27</strong>: 499-506.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Genetic+control+of+biochemical+reactions+in+neurospora&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1941&amp;rft.volume=27&amp;rft.au=Beadle+GW%2C+Tatum+EL&amp;rft.pages=499-506">&nbsp;</span></li>
     <li id="_note-3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-3"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Watson JD and Crick FH (1953). &quot;Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid&quot;. <em>Nature</em> <strong>171</strong> (4356): 737-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Molecular+structure+of+nucleic+acids%3B+a+structure+for+deoxyribose+nucleic+acid&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1953&amp;rft.volume=171&amp;rft.issue=4356&amp;rft.au=Watson+JD+and+Crick+FH&amp;rft.pages=737-8">&nbsp;</span> </li>
+
    <li id="_note-3"><strong>^</strong> <cite style="font-style: normal;">Watson JD and Crick FH (1953). &quot;Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid&quot;. <em>Nature</em> <strong>171</strong> (4356): 737-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Molecular+structure+of+nucleic+acids%3B+a+structure+for+deoxyribose+nucleic+acid&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1953&amp;rft.volume=171&amp;rft.issue=4356&amp;rft.au=Watson+JD+and+Crick+FH&amp;rft.pages=737-8">&nbsp;</span></li>
     <li id="_note-4"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-4"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Meselson, M. and Stahl, F.W. (1958). &quot;The Replication of DNA in Escherichia coli&quot;. <em>PNAS</em> <strong>44</strong>: 671-82.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=The+Replication+of+DNA+in+Escherichia+coli&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1958&amp;rft.volume=44&amp;rft.au=Meselson%2C+M.+and+Stahl%2C+F.W.&amp;rft.pages=671-82">&nbsp;</span> </li>
+
     <li id="_note-4"><strong>^</strong> <cite style="font-style: normal;">Meselson, M. and Stahl, F.W. (1958). &quot;The Replication of DNA in Escherichia coli&quot;. <em>PNAS</em> <strong>44</strong>: 671-82.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=The+Replication+of+DNA+in+Escherichia+coli&amp;rft.title=PNAS&amp;rft.jtitle=PNAS&amp;rft.date=1958&amp;rft.volume=44&amp;rft.au=Meselson%2C+M.+and+Stahl%2C+F.W.&amp;rft.pages=671-82">&nbsp;</span></li>
    <li id="_note-5"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-5"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). &quot;Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein&quot;. <em>Nature</em> <strong>237</strong> (5350): 82-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Nucleotide+sequence+of+the+gene+coding+for+the+bacteriophage+MS2+coat+protein&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1972&amp;rft.volume=237&amp;rft.issue=5350&amp;rft.au=Min+Jou+W%2C+Haegeman+G%2C+Ysebaert+M%2C+Fiers+W.&amp;rft.pages=82-8">&nbsp;</span> </li>
+
     <li id="_note-5"><strong>^</strong> <cite style="font-style: normal;">Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). &quot;Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein&quot;. <em>Nature</em> <strong>237</strong> (5350): 82-8.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Nucleotide+sequence+of+the+gene+coding+for+the+bacteriophage+MS2+coat+protein&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1972&amp;rft.volume=237&amp;rft.issue=5350&amp;rft.au=Min+Jou+W%2C+Haegeman+G%2C+Ysebaert+M%2C+Fiers+W.&amp;rft.pages=82-8">&nbsp;</span></li>
    <li id="_note-6"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-6"><font color="#0066cc">^</font></a></strong> <cite style="FONT-STYLE: normal">Fiers W et al. (1976). &quot;Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene&quot;. <em>Nature</em> <strong>260</strong>: 500-507.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Complete+nucleotide-sequence+of+Bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1976&amp;rft.volume=260&amp;rft.au=Fiers+W+et+al.&amp;rft.pages=500-507">&nbsp;</span> </li>
+
     <li id="_note-6"><strong>^</strong> <cite style="font-style: normal;">Fiers W et al. (1976). &quot;Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene&quot;. <em>Nature</em> <strong>260</strong>: 500-507.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.atitle=Complete+nucleotide-sequence+of+Bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;rft.title=Nature&amp;rft.jtitle=Nature&amp;rft.date=1976&amp;rft.volume=260&amp;rft.au=Fiers+W+et+al.&amp;rft.pages=500-507">&nbsp;</span></li>
    <li id="_note-7"><strong><a title="" href="http://en.wikipedia.org/wiki/Genetics#_ref-7"><font color="#0066cc">^</font></a></strong> <a class="external free" title="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf" rel="nofollow" href="http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf"><font color="#0066cc">http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf</font></a> </li>
+
    <li id="_note-7"><strong>^</strong> http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf</li>
 
</ol>
 
</ol>
<p><a id="See_also" name="See_also"></a></p>
+
<p>&nbsp;</p>
 
<h2><span class="mw-headline">See also</span></h2>
 
<h2><span class="mw-headline">See also</span></h2>
 
<ul>
 
<ul>
     <li><a title="Epigenetics" href="http://en.wikipedia.org/wiki/Epigenetics"><font color="#0066cc">Epigenetics</font></a> </li>
+
     <li>Epigenetics</li>
     <li><a title="Evolution" href="http://en.wikipedia.org/wiki/Evolution"><font color="#0066cc">Evolution</font></a> </li>
+
     <li>Evolution</li>
     <li><a title="List of genetics-related topics" href="http://en.wikipedia.org/wiki/List_of_genetics-related_topics"><font color="#0066cc">List of genetics-related topics</font></a> </li>
+
     <li>List of genetics-related topics</li>
     <li><a title="List of genetic engineering topics" href="http://en.wikipedia.org/wiki/List_of_genetic_engineering_topics"><font color="#0066cc">List of genetic engineering topics</font></a> </li>
+
     <li>List of genetic engineering topics</li>
     <li><a title="Central dogma of molecular biology" href="http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology"><font color="#0066cc">Central dogma of molecular biology</font></a> </li>
+
     <li>Central dogma of molecular biology</li>
     <li><a title="Chimera (genetics)" href="http://en.wikipedia.org/wiki/Chimera_%28genetics%29"><font color="#0066cc">Chimerism</font></a> </li>
+
     <li>Chimerism</li>
     <li><a title="Gene gun" href="http://en.wikipedia.org/wiki/Gene_gun"><font color="#0066cc">Gene gun</font></a> </li>
+
     <li>Gene gun</li>
     <li><a title="Gene regulatory network" href="http://en.wikipedia.org/wiki/Gene_regulatory_network"><font color="#0066cc">Gene regulatory network</font></a> </li>
+
     <li>Gene regulatory network</li>
     <li><a title="Genetic counseling" href="http://en.wikipedia.org/wiki/Genetic_counseling"><font color="#0066cc">Genetic counseling</font></a> </li>
+
     <li>Genetic counseling</li>
     <li><a title="Genetic engineering" href="http://en.wikipedia.org/wiki/Genetic_engineering"><font color="#0066cc">Genetic engineering</font></a> </li>
+
     <li>Genetic engineering</li>
     <li><a title="Genetic screen" href="http://en.wikipedia.org/wiki/Genetic_screen"><font color="#0066cc">Genetic screen</font></a> </li>
+
     <li>Genetic screen</li>
     <li><a title="Genetic testing" href="http://en.wikipedia.org/wiki/Genetic_testing"><font color="#0066cc">Genetic testing</font></a> </li>
+
     <li>Genetic testing</li>
     <li><a title="List of publications in biology" href="http://en.wikipedia.org/wiki/List_of_publications_in_biology#Genetics"><font color="#0066cc">Important publications in genetics</font></a> </li>
+
     <li>Important publications in genetics</li>
     <li><a title="List of genetics research organizations" href="http://en.wikipedia.org/wiki/List_of_genetics_research_organizations"><font color="#0066cc">List of genetics research organizations</font></a> </li>
+
     <li>List of genetics research organizations</li>
     <li><a title="List of geneticists" href="http://en.wikipedia.org/wiki/List_of_geneticists"><font color="#0066cc">List of geneticists</font></a> </li>
+
     <li>List of geneticists</li>
     <li><a title="Human mitochondrial genetics" href="http://en.wikipedia.org/wiki/Human_mitochondrial_genetics"><font color="#0066cc">Human mitochondrial genetics</font></a> </li>
+
     <li>Human mitochondrial genetics</li>
     <li><a title="Reprogenetics" href="http://en.wikipedia.org/wiki/Reprogenetics"><font color="#0066cc">Reprogenetics</font></a> </li>
+
    <li>[[Population genetics]]</li>
     <li><a title="Punnett square" href="http://en.wikipedia.org/wiki/Punnett_square"><font color="#0066cc">Punnett square</font></a> </li>
+
     <li>Reprogenetics</li>
     <li><a title="Genetically modified food" href="http://en.wikipedia.org/wiki/Genetically_modified_food"><font color="#0066cc">Genetically modified food</font></a> </li>
+
     <li>Punnett square</li>
     <li><a title="Transgenic plants" href="http://en.wikipedia.org/wiki/Transgenic_plants"><font color="#0066cc">Transgenic plants</font></a> </li>
+
     <li>Genetically modified food</li>
 +
     <li>Transgenic plants</li>
 
</ul>
 
</ul>
<p><a id="Journals" name="Journals"></a></p>
+
<p>&nbsp;</p>
 
<h2><span class="mw-headline">Journals</span></h2>
 
<h2><span class="mw-headline">Journals</span></h2>
 
<ul>
 
<ul>
     <li><em><a title="American Journal of Human Genetics" href="http://en.wikipedia.org/wiki/American_Journal_of_Human_Genetics"><font color="#0066cc">American Journal of Human Genetics</font></a></em> </li>
+
     <li><em><a title="American Journal of Human Genetics" href="http://en.wikipedia.org/wiki/American_Journal_of_Human_Genetics">American Journal of Human Genetics</a></em></li>
     <li><em><a class="new" title="American Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=American_Journal_of_Medical_Genetics&amp;action=edit"><font color="#0066cc">American Journal of Medical Genetics</font></a></em> </li>
+
     <li><em><a class="new" title="American Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=American_Journal_of_Medical_Genetics&amp;action=edit">American Journal of Medical Genetics</a></em></li>
     <li><em><a title="Annals of Human Genetics" href="http://en.wikipedia.org/wiki/Annals_of_Human_Genetics"><font color="#0066cc">Annals of Human Genetics</font></a></em> </li>
+
     <li><em><a title="Annals of Human Genetics" href="http://en.wikipedia.org/wiki/Annals_of_Human_Genetics">Annals of Human Genetics</a></em></li>
     <li><em><a title="European Journal of Human Genetics" href="http://en.wikipedia.org/wiki/European_Journal_of_Human_Genetics"><font color="#0066cc">European Journal of Human Genetics</font></a></em> </li>
+
     <li><em><a title="European Journal of Human Genetics" href="http://en.wikipedia.org/wiki/European_Journal_of_Human_Genetics">European Journal of Human Genetics</a></em></li>
     <li><em><a title="Genome Research" href="http://en.wikipedia.org/wiki/Genome_Research"><font color="#0066cc">Genome Research</font></a></em> </li>
+
     <li><em><a title="Genome Research" href="http://en.wikipedia.org/wiki/Genome_Research">Genome Research</a></em></li>
     <li><em><a class="new" title="Genomics (journal)" href="http://en.wikipedia.org/w/index.php?title=Genomics_%28journal%29&amp;action=edit"><font color="#0066cc">Genomics</font></a></em> </li>
+
     <li><em><a class="new" title="Genomics (journal)" href="http://en.wikipedia.org/w/index.php?title=Genomics_%28journal%29&amp;action=edit">Genomics</a></em></li>
     <li><em><a title="Genetics (journal)" href="http://en.wikipedia.org/wiki/Genetics_%28journal%29"><font color="#0066cc">Genetics</font></a></em> </li>
+
     <li><em><a title="Genetics (journal)" href="http://en.wikipedia.org/wiki/Genetics_%28journal%29">Genetics</a></em></li>
     <li><em><a title="Heredity (journal)" href="http://en.wikipedia.org/wiki/Heredity_%28journal%29"><font color="#0066cc">Heredity</font></a></em> </li>
+
     <li><em><a title="Heredity (journal)" href="http://en.wikipedia.org/wiki/Heredity_%28journal%29">Heredity</a></em></li>
     <li><em><a class="new" title="Human Molecular Genetics" href="http://en.wikipedia.org/w/index.php?title=Human_Molecular_Genetics&amp;action=edit"><font color="#0066cc">Human Molecular Genetics</font></a></em> </li>
+
     <li><em><a class="new" title="Human Molecular Genetics" href="http://en.wikipedia.org/w/index.php?title=Human_Molecular_Genetics&amp;action=edit">Human Molecular Genetics</a></em></li>
     <li><em><a title="Journal of Genetics" href="http://en.wikipedia.org/wiki/Journal_of_Genetics"><font color="#0066cc">Journal of Genetics</font></a></em> </li>
+
     <li><em><a title="Journal of Genetics" href="http://en.wikipedia.org/wiki/Journal_of_Genetics">Journal of Genetics</a></em></li>
     <li><em><a class="new" title="Journal of Human Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Human_Genetics&amp;action=edit"><font color="#0066cc">Journal of Human Genetics</font></a></em> </li>
+
     <li><em><a class="new" title="Journal of Human Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Human_Genetics&amp;action=edit">Journal of Human Genetics</a></em></li>
     <li><em><a class="new" title="Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Medical_Genetics&amp;action=edit"><font color="#0066cc">Journal of Medical Genetics</font></a></em> </li>
+
     <li><em><a class="new" title="Journal of Medical Genetics" href="http://en.wikipedia.org/w/index.php?title=Journal_of_Medical_Genetics&amp;action=edit">Journal of Medical Genetics</a></em></li>
     <li><em><a title="Nature Reviews Genetics" href="http://en.wikipedia.org/wiki/Nature_Reviews_Genetics"><font color="#0066cc">Nature Reviews Genetics</font></a></em> </li>
+
     <li><em><a title="Nature Reviews Genetics" href="http://en.wikipedia.org/wiki/Nature_Reviews_Genetics">Nature Reviews Genetics</a></em></li>
     <li><em><a title="PLoS Genetics" href="http://en.wikipedia.org/wiki/PLoS_Genetics"><font color="#0066cc">PLoS Genetics</font></a></em> </li>
+
     <li><em><a title="PLoS Genetics" href="http://en.wikipedia.org/wiki/PLoS_Genetics">PLoS Genetics</a></em></li>
 
</ul>
 
</ul>
<p><a id="External_link" name="External_link"></a></p>
+
<p>&nbsp;</p>
<h2><span class="mw-headline">External link</span></h2>
+
<h2><span class="mw-headline">External link<br />
<div class="infobox sisterproject">
+
<font size="2">[http://populationgenetics.net Populationgenetics]<br />
<div style="FLOAT: left">
+
[http://populationgenomics.org Populationgenomics.org]<br />
<div class="floatnone"><span><a class="image" title="Wikibooks" href="http://en.wikipedia.org/wiki/Image:Wikibooks-logo-en.svg"></a></span></div>
+
[http://personalgenome.net Personalgenome.net]<br />
</div>
+
[http://omics.org Omics.org]<br />
<div style="MARGIN-LEFT: 60px"><a title="Wikibooks" href="http://en.wikipedia.org/wiki/Wikibooks"><font color="#0066cc">Wikibooks</font></a> has a book on the topic of
+
[http://www.arizona-breast-cancer-specialists.com/brachytherapy/all-about-what-is-brachytherapy.html Breast brachytherapy]</font></span></h2>
<div style="MARGIN-LEFT: 10px"><em><a class="extiw" title="wikibooks:Genetics" href="http://en.wikibooks.org/wiki/Genetics"><font color="#0066cc">Genetics</font></a></em></div>
 
</div>
 
</div>
 
<div class="infobox sisterproject">
 
<div class="floatleft"><span><a class="image" title="" href="http://en.wikipedia.org/wiki/Image:Commons-logo.svg"><font color="#0066cc"></font></a></span></div>
 
<div style="MARGIN-LEFT: 60px"><a title="Wikimedia Commons" href="http://en.wikipedia.org/wiki/Wikimedia_Commons"><font color="#0066cc">Wikimedia Commons</font></a> has media related to:
 
<div style="MARGIN-LEFT: 10px"><em><strong><a class="extiw" title="commons:Category:Genetics" href="http://commons.wikimedia.org/wiki/Category:Genetics"><font color="#0066cc">Genetics</font></a></strong></em></div>
 
</div>
 
</div>
 

Latest revision as of 15:55, 31 December 2010

Genetics (from the Greek genno γεννώ = give birth) is the science of genes, heredity, evolution, and the variation of organisms. The phenomenon of inheritance has been implicitly utilized in breeding of organisms and selection for desired traits, and the scientific field of genetics seeks to understand the mechanisms of inheritance.miere de albine

The genetic information of organisms is contained within the chemical structure of DNA (deoxyribonucleic acid) molecules. Individually inherited traits, corresponding to regions in the DNA sequence, are called genes. Genes encode the information necessary for synthesizing RNA and proteins -- complex molecules generally responsible for enzymatic reactions, synthesis, communication and structure within a cell. DNA sequence is transcribed into an intermediate molecule called "messenger RNA", and ribosomes translate this sequence to form a chain of amino acids to form a protein. This process is known as the central dogma of molecular biology.auto parts online

Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment that determines the ultimate outcome. Thus, while identical twins have the same DNA and genes, differences in their experiences during development and childhood results in different personalities and fingerprints.

 

History

 

Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes.
Morgan's observation of sex-linked inheritance of a mutation causing white eyes in Drosophila led him to the hypothesis that genes are located upon chromosomes.

Gregor Johann Mendel, a German-Czech Augustinian monk and scientist, is often called the "father of modern genetics", a title given to him due to his early work on the heredity of plants. In his paper "Versuche über Pflanzenhybriden" ("Experiments on Plant Hybridization"), presented in 1865 to the Brunn Natural History Society, Gregor Mendel traced the inheritance patterns of certain traits in pea plants and showed that they could be described mathematically.[3] Although not all features show these patterns of Mendelian inheritance, his work suggested the utility of the application of statistics to the study of inheritance.vanzari auto

The significance of Mendel's observations was not understood until early in the twentieth century, after his death, when his research was re-discovered by other scientists working on similar problems. The word "genetics" itself was coined by William Bateson, a significant proponent of Mendel's work, in a letter to Adam Sedgwick, dated April 18, 1905.[4] Bateson promoted the term "genetics" publicly in his inaugural address to the Third International Conference on Plant Hybridization (London, England) in 1906.[5]

In the decades following rediscovery and popularization of Mendel's work, numerous experiments sought to elucidate the molecular basis of DNA. In 1910 Thomas Hunt Morgan argued that genes reside on chromosomes, based observations of a sex-linked white eye mutation in fruit flies. In 1913 his student Alfred Sturtevant used the phenomenon of genetic linkage and the associated recombination rates to demonstrate and map the linear arrangement of genes upon the chromosome.

The chemical structure of DNA.
The chemical structure of DNA.

Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA -- it was unknown which was critical for heredity or how the process occurred. In 1928, Frederick Griffith published his discovery of the phenomenon of transformation (see Griffith's experiment); sixteen years later, in 1944, Oswald Theodore Avery, Colin McLeod and Maclyn McCarty used this phenomenon to isolate and identify the molecule responsible for transformation as DNA[6]. The Hershey-Chase experiment in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance dezmembrari auto .

James D. Watson and Francis Crick resolved the structure of DNA in 1953, using X-ray crystallography information that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a "complement" on the other strand. This structure not only provided a physical explanation for information, contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. They famously observed this in their paper, stating: "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

In the following decades, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of DNA sequencing in 1977 enabled the determination of nucleotide sequences on DNA,[7] and the PCR method developed by Kary Banks Mullis in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the Human Genome Project and parallel private effort by Celera Genomics, culminated in the sequencing of the human genome in 2001.

Timeline of notable discoveries

  • 1865 Gregor Mendel's paper, Experiments on Plant Hybridization[3]
  • 1869 Friedrich Miescher discovers a weak acid in the nuclei of white blood cells that today we call DNA[1]
  • 1880-1890 Walther Flemming, Eduard Strasburger, and Edouard van Beneden elucidate chromosome distribution during cell division
  • 1903 Walter Sutton hypothesizes that chromosomes, which segregate in a Mendelian fashion, are hereditary units[8]
  • 1906 The term "genetics" is proposed by the British biologist William Bateson[5]
  • 1910 Thomas Hunt Morgan shows that genes reside on chromosomes, and discovered linked genes on chromosomes that do not follow Mendel's law of independent allele segregation
  • 1913 Alfred Sturtevant makes the first genetic map of a chromosome, showing genes are linearly arranged
  • 1918 Ronald Fisher publishes "The Correlation Between Relatives on the Supposition of Mendelian Inheritance" the modern synthesis starts.
  • 1928 Frederick Griffith discovers a hereditary molecule that is transmissible between bacteria (see Griffiths experiment)
  • 1931 Crossing over is the cause of recombination (see Barbara McClintock and cytogenetics)
  • 1941 Edward Lawrie Tatum and George Wells Beadle show that genes code for proteins[9]
  • 1944 Oswald Theodore Avery, Colin McLeod and Maclyn McCarty isolate DNA as the genetic material (at that time called transforming principle)[6]
  • 1950 Erwin Chargaff shows that the four nucleotides are not present in nucleic acids in stable proportions, but that some general rules appear to hold (e.g., the nucleotide bases Adenine-Thymine and Cytosine-Guanine always remain in equal proportions).
  • 1950 Barbara McClintock discovers transposons in maize
  • 1952 The Hershey-Chase experiment proves the genetic information of phages (and all other organisms) to be DNA
  • 1953 DNA structure is resolved to be a double helix by James D. Watson and Francis Crick, with the help of Rosalind Franklin[10]
  • 1956 Joe Hin Tjio and Albert Levan established the correct chromosome number in humans to be 46
  • 1958 The Meselson-Stahl experiment demonstrates that DNA is semiconservatively replicated[11]
  • 1961 The genetic code is arranged in triplets
  • 1964 Howard Temin showed using RNA viruses that Watson's central dogma is not always true
  • 1970 Restriction enzymes were discovered in studies of a bacterium, Haemophilus influenzae, enabling scientists to cut and paste DNA
  • 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein[12].
  • 1976, Walter Fiers and his team determine the complete nucleotide-sequence of Bacteriophage MS2-RNA[13]
  • 1977 DNA is sequenced for the first time by Fred Sanger, Walter Gilbert, and Allan Maxam working independently. Sanger's lab complete the entire genome of sequence of Bacteriophage Φ-X174[7].
  • 1983 Kary Banks Mullis discovers the polymerase chain reaction enabling the easy amplification of DNA
  • 1985 Alec Jeffreys discovers genetic finger printing.
  • 1989 The first human gene is sequenced by Francis Collins and Lap-Chee Tsui. It encodes the CFTR protein. Defects in this gene cause cystic fibrosisasigurari auto ieftine
  • 1995 The genome of Haemophilus influenzae is the first genome of a free living organism to be sequenced.
  • 1996 Saccharomyces cerevisiae is the first eukaryote genome sequence to be released
  • 1998 The first genome sequence for a multicellular eukaryote, C. elegans is released.
  • 2001 First draft sequences of the human genome are released simultaneously by the Human Genome Project and Celera Genomics piese auto .
  • 2003 (14 April) Successful completion of Human Genome Project with 98% of the genome sequenced to a 99.99% accuracy.[14]

Areas of genetics

 

Classical genetics


Classical genetics consists of the techniques and methodologies of genetics that predate the advent of molecular biology. After the discovery of the genetic code and such tools of cloning as restriction enzymes, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use, such as Mendel's laws and Muller's morphs. Patterns of inheritance still remain a useful tool for the study of genetic diseases.

 

Behavioral genetics


Behavioral genetics studies the influence of varying genetics on animal behavior. Behavioral genetics studies the effects of human disorders as well as its causes. Behavioral genetics has yielded some very interesting questions about the evolution of various behaviors, and even some fundamental principles of evolution in general. For example, guppies and meerkats seem to be genetically driven to post a lookout to watch for predators. This lookout stands a significantly slimmer chance of survival than the others, so because of the mechanism of natural selection, it would seem that this trait would be lost after a few generations. However, the gene has remained, leading evolutionary philosopher/scientists such as Richard Dawkins and W. D. Hamilton to propose explanations, including the theories of kin selection and reciprocal altruism. The interactions and behaviors of gregarious creatures is partially genetic in cause and must therefore be approached by evolutionary theory.

 

Clinical genetics

 

Physicians who are trained as Geneticists diagnose, treat, and counsel patients with genetic disorders or syndromes. These doctors are typically trained in a genetics residency and/or fellowship.

Clinical genetics is also the study of genetic causes of clinical diseases.

 

Molecular genetics

 

Molecular genetics builds upon the foundation of classical genetics but focuses on the structure and function of genes at a molecular level. Molecular genetics employs the methods of both classical genetics (such as hybridization) and molecular biology. It is so-called to differentiate it from other sub fields of genetics such as ecological genetics and population genetics. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct scientific classification of organisms: this is called molecular systematics. The study of inherited features not strictly associated with changes in the DNA sequence is called epigenetics.

Some take the view that life can be defined, in molecular terms, as the set of strategies which RNA polynucleotides have used and continue to use to perpetuate themselves. This definition grows out of work on the origin of life, specifically the RNA world hypothesis.

 

Population, quantitative and ecological genetics


Population, quantitative and ecological genetics are all very closely related subfields and also build upon classical genetics (supplemented with modern molecular genetics). They are chiefly distinguished by a common theme of studying populations of organisms drawn from nature but differ somewhat in the choice of which aspect of the organism on which they focus. The foundational discipline is population genetics which studies the distribution of and change in allele frequencies of genes under the influence of the four evolutionary forces: natural selection, genetic drift, mutation and migration. It is the theory that attempts to explain such phenomena as adaptation and speciation.

The related subfield of quantitative genetics, which builds on population genetics, aims to predict the response to selection given data on the phenotype and relationships of individuals. A more recent development of quantitative genetics is the analysis of quantitative trait loci. Traits that are under the influence of a large number of genes are known as quantitative traits, and their mapping to a location on the chromosome requires accurate phenotypic, pedigree and marker data from a large number of related individuals.

Ecological genetics again builds upon the basic principles of population genetics but is more explicitly focused on ecological issues. While molecular genetics studies the structure and function of genes at a molecular level, ecological genetics focuses on wild populations of organisms, and attempts to collect data on the ecological aspects of individuals as well as molecular markers from those individuals.

Population genetics is closely linked with the methods of genetic epidemiology. One method to study gene-disease associations is using the principle of Mendelian randomization.

Genomics

 

A more recent development is the rise of genomics, which attempts the study of large-scale genetic patterns across the genome for (and in principle, all the DNA in) a given species. The field typically depends on the availability of whole genome sequences, computational tools and Sequence profiling tool using bioinformatics approaches for analysis of large sets of data.

 

Closely-related fields

The science which grew out of the union of biochemistry and genetics is widely known as molecular biology. The term "genetics" is often widely conflated with the notion of genetic engineering, where the DNA of an organism is modified for some kind of practical end, but most research in genetics is aimed at understanding and explaining the effect of genes on phenotypes and in the role of genes in populations (see population genetics and ecological genetics), rather than genetic engineering.

 

References

  1. ^ a b Daniel Hartl and Elizabeth Jones (2005). Genetics: Analysis of Genes and Genomes, 6th edition. Jones & Bartlett.  854 pages. ISBN 0-7637-1511-5.
  2. ^ Robert C. King, Willliam D. Stansfield, Pamela K. Mulligan (2006). A Dictionary of Genetics, 7th edition. New York: Oxford University Press.  596 pages. ISBN 0-19-530761-5 (paper).
  3. ^ a b Mendel, G.. "Versuche über Pflanzen-Hybriden". Verh. Naturforsch. Ver. Brünn 4: 3-47.  (in English in 1901, J. R. Hortic. Soc. 26: 1–32)
  4. ^ Online copy of William Bateson's letter to Adam Sedgwick
  5. ^ a b Bateson, William (1907). "The Progress of Genetic Research". Wilks, W. (editor) Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding, London: Royal Horticultural Society. 
    Although the conference was titled "International Conference on Hybridisation and Plant Breeding", Wilks changed the title for publication as a result of Bateson's speech.
  6. ^ a b Avery, MacLeod, and McCarty (1944). "Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III". Journal of Experimental Medicine 79 (1): 137-58. 35th anniversary reprint available on piese auto ieftine
  7. ^ a b Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-94
  8. ^ Ernest W. Crow and James F. Crow (2002). "100 Years Ago: Walter Sutton and the Chromosome Theory of Heredity". Genetics 160. 
  9. ^ Beadle GW, Tatum EL (1941). "Genetic control of biochemical reactions in neurospora". PNAS 27: 499-506. 
  10. ^ Watson JD and Crick FH (1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid". Nature 171 (4356): 737-8. 
  11. ^ Meselson, M. and Stahl, F.W. (1958). "The Replication of DNA in Escherichia coli". PNAS 44: 671-82. 
  12. ^ Min Jou W, Haegeman G, Ysebaert M, Fiers W. (1972). "Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein". Nature 237 (5350): 82-8. 
  13. ^ Fiers W et al. (1976). "Complete nucleotide-sequence of Bacteriophage MS2-RNA - primary and secondary structure of replicase gene". Nature 260: 500-507. 
  14. ^ http://www.genoscope.cns.fr/externe/English/Actualites/Presse/HGP/HGP_press_release-140403.pdf

 

See also

  • Epigenetics
  • Evolution
  • List of genetics-related topics
  • List of genetic engineering topics
  • Central dogma of molecular biology
  • Chimerism
  • Gene gun
  • Gene regulatory network
  • Genetic counseling
  • Genetic engineering
  • Genetic screen
  • Genetic testing
  • Important publications in genetics
  • List of genetics research organizations
  • List of geneticists
  • Human mitochondrial genetics
  • Population genetics
  • Reprogenetics
  • Punnett square
  • Genetically modified food
  • Transgenic plants

 

Journals

 

External link
Populationgenetics
Populationgenomics.org
Personalgenome.net
Omics.org
Breast brachytherapy