Difference between revisions of "Bioinformatics"

From Opengenome.net
m (Protected "Bioinformatics" [edit=sysop:move=sysop])
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<p><strong>Bioinformatics</strong> and <strong>computational biology</strong> involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and protein-protein interactions, and the modeling of evolution.</p>
+
<p><strong>Bioinformatics</strong>&nbsp;involves the use of techniques including applied mathematics, informatics, statistics, computer science,&nbsp;chemistry, and biochemistry to solve biological problems. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and protein-protein interactions, and the modeling of evolution.</p>
<p>&nbsp;</p>
+
<p>&nbsp;[[111]]</p>
<h2><span class="mw-headline">Introduction</span></h2>
+
<p><span class="mw-headline"><font size="5">Introduction</font></span></p>
 
<p>The terms <em>bioinformatics</em> and <em>computational biology</em> are often used interchangeably. However <em>bioinformatics</em> more properly refers to the creation and advancement of algorithms, computational and statistical techniques, and theory to solve formal and practical problems inspired from the management and analysis of biological data. <em>Computational biology,</em> on the other hand, refers to hypothesis-driven investigation of a specific biological problem using computers, carried out with experimental or simulated data, with the primary goal of discovery and the advancement of biological knowledge. Put more simply, bioinformatics is concerned with the information while computational biology is concerned with the hypotheses. A similar distinction is made by National Institutes of Health in their working definitions of Bioinformatics and Computational Biology, where it is further emphasized that there is a tight coupling of developments and knowledge between the more hypothesis-driven research in computational biology and technique-driven research in bioinformatics.</p>
 
<p>The terms <em>bioinformatics</em> and <em>computational biology</em> are often used interchangeably. However <em>bioinformatics</em> more properly refers to the creation and advancement of algorithms, computational and statistical techniques, and theory to solve formal and practical problems inspired from the management and analysis of biological data. <em>Computational biology,</em> on the other hand, refers to hypothesis-driven investigation of a specific biological problem using computers, carried out with experimental or simulated data, with the primary goal of discovery and the advancement of biological knowledge. Put more simply, bioinformatics is concerned with the information while computational biology is concerned with the hypotheses. A similar distinction is made by National Institutes of Health in their working definitions of Bioinformatics and Computational Biology, where it is further emphasized that there is a tight coupling of developments and knowledge between the more hypothesis-driven research in computational biology and technique-driven research in bioinformatics.</p>
 
<p>A common thread in projects in bioinformatics and computational biology is the use of mathematical tools to extract useful information from data produced by high-throughput biological techniques such as genome sequencing. A representative problem in bioinformatics is the assembly of high-quality genome sequences from fragmentary &quot;shotgun&quot; DNA sequencing. Other common problems include the study of gene regulation using data from microarrays or mass spectrometry.</p>
 
<p>A common thread in projects in bioinformatics and computational biology is the use of mathematical tools to extract useful information from data produced by high-throughput biological techniques such as genome sequencing. A representative problem in bioinformatics is the assembly of high-quality genome sequences from fragmentary &quot;shotgun&quot; DNA sequencing. Other common problems include the study of gene regulation using data from microarrays or mass spectrometry.</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">Major research areas</span></h2>
+
<p><span class="mw-headline"><font size="5">Major research areas</font></span></p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 
<h3><span class="mw-headline">Sequence analysis</span></h3>
 
<h3><span class="mw-headline">Sequence analysis</span></h3>
Line 18: Line 18:
 
<p>Evolutionary biology is the study of the origin and descent of species, as well as their change over time. Informatics has assisted evolutionary biologists in several key ways; it has enabled researchers to:</p>
 
<p>Evolutionary biology is the study of the origin and descent of species, as well as their change over time. Informatics has assisted evolutionary biologists in several key ways; it has enabled researchers to:</p>
 
<ul>
 
<ul>
     <li>trace the evolution of a large number of organisms by measuring changes in their DNA, rather than through physical taxonomy or physiological observations alone, </li>
+
     <li>trace the evolution of a large number of organisms by measuring changes in their DNA, rather than through physical taxonomy or physiological observations alone,</li>
     <li>more recently, compare entire genomes, which permits the study of more complex evolutionary events, such as gene duplication, lateral gene transfer, and the prediction of bacterial speciation factors, </li>
+
     <li>more recently, compare entire genomes, which permits the study of more complex evolutionary events, such as gene duplication, lateral gene transfer, and the prediction of bacterial speciation factors,</li>
     <li>build complex computational models of populations to predict the outcome of the system over time </li>
+
     <li>build complex computational models of populations to predict the outcome of the system over time</li>
     <li>track and share information on an increasingly large number of species and organisms </li>
+
     <li>track and share information on an increasingly large number of species and organisms</li>
 
</ul>
 
</ul>
 
<p>Future work endeavours to reconstruct the now more complex tree of life.</p>
 
<p>Future work endeavours to reconstruct the now more complex tree of life.</p>
Line 62: Line 62:
 
<p>Computational technologies are used to accelerate or fully automate the processing, quantification and analysis of large amounts of high-information-content biomedical imagery. Modern image analysis systems augment an observer's ability to make measurements from a large or complex set of images, by improving accuracy, objectivity, or speed. A fully developed analysis system may completely replace the observer. Although these systems are not unique to biomedical imagery, biomedical imaging is becoming more important for both diagnostics and research. Some examples are:</p>
 
<p>Computational technologies are used to accelerate or fully automate the processing, quantification and analysis of large amounts of high-information-content biomedical imagery. Modern image analysis systems augment an observer's ability to make measurements from a large or complex set of images, by improving accuracy, objectivity, or speed. A fully developed analysis system may completely replace the observer. Although these systems are not unique to biomedical imagery, biomedical imaging is becoming more important for both diagnostics and research. Some examples are:</p>
 
<ul>
 
<ul>
     <li>high-throughput and high-fidelity quantification and sub-cellular localization (high-content screening, cytohistopathology) </li>
+
     <li>high-throughput and high-fidelity quantification and sub-cellular localization (high-content screening, cytohistopathology)</li>
     <li>morphometrics </li>
+
     <li>morphometrics</li>
     <li>clinical image analysis and visualization </li>
+
     <li>clinical image analysis and visualization</li>
     <li>determining the real-time air-flow patterns in breathing lungs of living animals </li>
+
     <li>determining the real-time air-flow patterns in breathing lungs of living animals</li>
     <li>quantifying occlusion size in real-time imagery from the development of and recovery during arterial injury </li>
+
     <li>quantifying occlusion size in real-time imagery from the development of and recovery during arterial injury</li>
     <li>making behavioral observations from extended video recordings of laboratory animals </li>
+
     <li>making behavioral observations from extended video recordings of laboratory animals</li>
     <li>infrared measurements for metabolic activity determination </li>
+
     <li>infrared measurements for metabolic activity determination</li>
 
</ul>
 
</ul>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">Software tools</span></h2>
+
<p><span class="mw-headline"><font size="5">Software tools</font></span></p>
 
<p>First generation bioinformatics tools consisted of applications, usually with a text-based interface, which performed a specific task well. The computational biology tool best-known among biologists is probably BLAST, an algorithm for searching large databases of protein or DNA sequences. The NCBI provides a popular web-based implementation that searches their massive sequence databases. Also fairly early on, due to the amassing of sequence and annotation data, keyword search engines which were able to resolve gene and protein synonyms were important. Computer scripting languages such as Perl (thanks to its regular expressions handling facilities) and Python are often used to interface with biological databases and parse output from bioinformatics programs written in languages such as C or C++. Communities of bioinformatics programmers have set up free open source bioinformatics projects to develop and distribute the tools and modules they produce.</p>
 
<p>First generation bioinformatics tools consisted of applications, usually with a text-based interface, which performed a specific task well. The computational biology tool best-known among biologists is probably BLAST, an algorithm for searching large databases of protein or DNA sequences. The NCBI provides a popular web-based implementation that searches their massive sequence databases. Also fairly early on, due to the amassing of sequence and annotation data, keyword search engines which were able to resolve gene and protein synonyms were important. Computer scripting languages such as Perl (thanks to its regular expressions handling facilities) and Python are often used to interface with biological databases and parse output from bioinformatics programs written in languages such as C or C++. Communities of bioinformatics programmers have set up free open source bioinformatics projects to develop and distribute the tools and modules they produce.</p>
 
<p>As the data sources expanded and diversified, both in content and geography, bioinformatic meta search engines, such as Sequence profiling tools, emerged to help find relevant information from several databases. These meta search engines might index data from a local server or even from a panel of third party services.</p>
 
<p>As the data sources expanded and diversified, both in content and geography, bioinformatic meta search engines, such as Sequence profiling tools, emerged to help find relevant information from several databases. These meta search engines might index data from a local server or even from a panel of third party services.</p>
 
<p>More recently, SOAP-based interfaces have been developed for a wide variety of bioinformatics applications allowing an application running on one computer in one part of the world to use algorithms, data and computing resources on servers in other parts of the world. A large availability of these SOAP-based bioinformatics web services, along with the open source bioinformatics collections, lead to the next generation of bioinformatics tools: the integrated bioinformatics platform. These tools range from a collection of standalone tools with a common data format under a single, slick standalone or web-based interface, to integrative and extensible bioinformatics workflow development environments.</p>
 
<p>More recently, SOAP-based interfaces have been developed for a wide variety of bioinformatics applications allowing an application running on one computer in one part of the world to use algorithms, data and computing resources on servers in other parts of the world. A large availability of these SOAP-based bioinformatics web services, along with the open source bioinformatics collections, lead to the next generation of bioinformatics tools: the integrated bioinformatics platform. These tools range from a collection of standalone tools with a common data format under a single, slick standalone or web-based interface, to integrative and extensible bioinformatics workflow development environments.</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">See also</span></h2>
+
<p><span class="mw-headline"><font size="5">See also</font></span></p>
 
<h3><span class="mw-headline">Related topics</span></h3>
 
<h3><span class="mw-headline">Related topics</span></h3>
 
<p>
 
<p>
Line 84: Line 84:
 
             <td valign="top">
 
             <td valign="top">
 
             <ul>
 
             <ul>
                 <li>Biocybernetics </li>
+
                 <li>Biocybernetics</li>
                 <li>Bioinformatics companies </li>
+
                 <li>Bioinformatics companies</li>
                 <li>Biologically-inspired computing </li>
+
                 <li>Biologically-inspired computing</li>
                 <li>Biomedical informatics </li>
+
                 <li>Biomedical informatics</li>
                 <li>Computational biology </li>
+
                 <li>Computational biology</li>
                 <li>Computational biomodeling </li>
+
                 <li>Computational biomodeling</li>
                 <li>Computational genomics </li>
+
                 <li>Computational genomics</li>
                 <li>Dot plot (bioinformatics) </li>
+
                 <li>Dot plot (bioinformatics)</li>
 
             </ul>
 
             </ul>
 
             </td>
 
             </td>
 
             <td valign="top">
 
             <td valign="top">
 
             <ul>
 
             <ul>
                 <li>Metabolic network modelling </li>
+
                 <li>Metabolic network modelling</li>
                 <li>Molecular modelling </li>
+
                 <li>Molecular modelling</li>
                 <li>Morphometrics </li>
+
                 <li>Morphometrics</li>
                 <li>Natural computation </li>
+
                 <li>Natural computation</li>
                 <li>Pharmaceutical company </li>
+
                 <li>Pharmaceutical company</li>
                 <li>Protein-protein interaction prediction </li>
+
                 <li>Protein-protein interaction prediction</li>
                 <li>List of numerical analysis software </li>
+
                 <li>List of numerical analysis software</li>
 
             </ul>
 
             </ul>
 
             </td>
 
             </td>
Line 117: Line 117:
 
             <td valign="top">
 
             <td valign="top">
 
             <ul>
 
             <ul>
                 <li>Applied mathematics </li>
+
                 <li>Applied mathematics</li>
                 <li>Artificial intelligence </li>
+
                 <li>Artificial intelligence</li>
                 <li>Biology </li>
+
                 <li>Biology</li>
                 <li>Cheminformatics </li>
+
                 <li>Cheminformatics</li>
                 <li>Computational biology </li>
+
                 <li>Computational biology</li>
 
             </ul>
 
             </ul>
 
             </td>
 
             </td>
 
             <td valign="top">
 
             <td valign="top">
 
             <ul>
 
             <ul>
                 <li>Computational science </li>
+
                 <li>Computational science</li>
                 <li>Computer science </li>
+
                 <li>Computer science</li>
                 <li>Cybernetics </li>
+
                 <li>Cybernetics</li>
                 <li>Informatics </li>
+
                 <li>Informatics</li>
                 <li>Mathematical biology </li>
+
                 <li>Mathematical biology</li>
 
             </ul>
 
             </ul>
 
             </td>
 
             </td>
 
             <td valign="top">
 
             <td valign="top">
 
             <ul>
 
             <ul>
                 <li>Neuroinformatics </li>
+
                 <li>Neuroinformatics</li>
                 <li>Scientific computing </li>
+
                 <li>Scientific computing</li>
                 <li>Statistics </li>
+
                 <li>Statistics</li>
                 <li>Systems biology </li>
+
                 <li>Systems biology</li>
                 <li>Theoretical biology </li>
+
                 <li>Theoretical biology</li>
 
             </ul>
 
             </ul>
 
             </td>
 
             </td>
Line 147: Line 147:
 
</p>
 
</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">References</span></h2>
+
<p><span class="mw-headline"><font size="5">References</font></span></p>
 
<ul>
 
<ul>
     <li>Aluru, Srinivas, ed. <em>Handbook of Computational Molecular Biology</em>. Chapman &amp; Hall/Crc, 2006. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=1584884061"><font color="#0066cc">ISBN 1584884061</font></a> (Chapman &amp; Hall/Crc Computer and Information Science Series) </li>
+
     <li>Aluru, Srinivas, ed. <em>Handbook of Computational Molecular Biology</em>. Chapman &amp; Hall/Crc, 2006. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=1584884061"><font color="#0066cc">ISBN 1584884061</font></a> (Chapman &amp; Hall/Crc Computer and Information Science Series)</li>
     <li>Baldi, P and Brunak, S, <em>Bioinformatics: The Machine Learning Approach</em>, 2nd edition. MIT Press, 2001. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=026202506X"><font color="#0066cc">ISBN 0-262-02506-X</font></a> </li>
+
     <li>Baldi, P and Brunak, S, <em>Bioinformatics: The Machine Learning Approach</em>, 2nd edition. MIT Press, 2001. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=026202506X"><font color="#0066cc">ISBN 0-262-02506-X</font></a></li>
     <li>Barnes, M.R. and Gray, I.C., eds., <em>Bioinformatics for Geneticists</em>, first edition. Wiley, 2003. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0470843942"><font color="#0066cc">ISBN 0-470-84394-2</font></a> </li>
+
     <li>Barnes, M.R. and Gray, I.C., eds., <em>Bioinformatics for Geneticists</em>, first edition. Wiley, 2003. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0470843942"><font color="#0066cc">ISBN 0-470-84394-2</font></a></li>
     <li>Baxevanis, A.D. and Ouellette, B.F.F., eds., <em>Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins</em>, third edition. Wiley, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0471478784"><font color="#0066cc">ISBN 0-471-47878-4</font></a> </li>
+
     <li>Baxevanis, A.D. and Ouellette, B.F.F., eds., <em>Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins</em>, third edition. Wiley, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0471478784"><font color="#0066cc">ISBN 0-471-47878-4</font></a></li>
     <li>Baxevanis, A.D., Petsko, G.A., Stein, L.D., and Stormo, G.D., eds., <em>Current Protocols in Bioinformatics</em>. Wiley, 2007. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0471250937"><font color="#0066cc">ISBN 0-471-25093-7</font></a> </li>
+
     <li>Baxevanis, A.D., Petsko, G.A., Stein, L.D., and Stormo, G.D., eds., <em>Current Protocols in Bioinformatics</em>. Wiley, 2007. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0471250937"><font color="#0066cc">ISBN 0-471-25093-7</font></a></li>
     <li>Claverie, J.M. and C. Notredame, <em>Bioinformatics for Dummies</em>. Wiley, 2003. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0764516965"><font color="#0066cc">ISBN 0-7645-1696-5</font></a> </li>
+
     <li>Claverie, J.M. and C. Notredame, <em>Bioinformatics for Dummies</em>. Wiley, 2003. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0764516965"><font color="#0066cc">ISBN 0-7645-1696-5</font></a></li>
     <li>Cristianini, N. and Hahn, M. <a class="external text" title="http://www.computational-genomics.net/" rel="nofollow" href="http://www.computational-genomics.net/"><em><font color="#0066cc">Introduction to Computational Genomics</font></em></a>, Cambridge University Press, 2006. (<a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=9780521671910"><font color="#0066cc">ISBN 9780521671910</font></a> | <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0521671914"><font color="#0066cc">ISBN 0521671914</font></a>) </li>
+
     <li>Cristianini, N. and Hahn, M. <a class="external text" title="http://www.computational-genomics.net/" rel="nofollow" href="http://www.computational-genomics.net/"><em><font color="#0066cc">Introduction to Computational Genomics</font></em></a>, Cambridge University Press, 2006. (<a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=9780521671910"><font color="#0066cc">ISBN 9780521671910</font></a> | <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0521671914"><font color="#0066cc">ISBN 0521671914</font></a>)</li>
     <li>Durbin, R., S. Eddy, A. Krogh and G. Mitchison, <em>Biological sequence analysis</em>. Cambridge University Press, 1998. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0521629713"><font color="#0066cc">ISBN 0-521-62971-3</font></a> </li>
+
     <li>Durbin, R., S. Eddy, A. Krogh and G. Mitchison, <em>Biological sequence analysis</em>. Cambridge University Press, 1998. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0521629713"><font color="#0066cc">ISBN 0-521-62971-3</font></a></li>
     <li>Gilbert, D. <a class="external text" title="http://bib.oxfordjournals.org/cgi/content/abstract/5/3/300" rel="nofollow" href="http://bib.oxfordjournals.org/cgi/content/abstract/5/3/300"><em><font color="#0066cc">Bioinformatics software resources</font></em></a>. Briefings in Bioinformatics, Briefings in Bioinformatics, 2004 5(3):300-304. </li>
+
     <li>Gilbert, D. <a class="external text" title="http://bib.oxfordjournals.org/cgi/content/abstract/5/3/300" rel="nofollow" href="http://bib.oxfordjournals.org/cgi/content/abstract/5/3/300"><em><font color="#0066cc">Bioinformatics software resources</font></em></a>. Briefings in Bioinformatics, Briefings in Bioinformatics, 2004 5(3):300-304.</li>
     <li>Keedwell, E., <em>Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to Bioinformatics Problems</em>. Wiley, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0470021756"><font color="#0066cc">ISBN 0-470-02175-6</font></a> </li>
+
     <li>Keedwell, E., <em>Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to Bioinformatics Problems</em>. Wiley, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0470021756"><font color="#0066cc">ISBN 0-470-02175-6</font></a></li>
     <li>Kohane, et al. <em>Microarrays for an Integrative Genomics.</em> The MIT Press, 2002. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=026211271X"><font color="#0066cc">ISBN 0-262-11271-X</font></a> </li>
+
     <li>Kohane, et al. <em>Microarrays for an Integrative Genomics.</em> The MIT Press, 2002. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=026211271X"><font color="#0066cc">ISBN 0-262-11271-X</font></a></li>
     <li>Lund, O. et al. <em>Immunological Bioinformatics.</em> The MIT Press, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0262122804"><font color="#0066cc">ISBN 0-262-12280-4</font></a> </li>
+
     <li>Lund, O. et al. <em>Immunological Bioinformatics.</em> The MIT Press, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0262122804"><font color="#0066cc">ISBN 0-262-12280-4</font></a></li>
     <li>Michael S. Waterman, <em>Introduction to Computational Biology: Sequences, Maps and Genomes</em>. CRC Press, 1995. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0412993910"><font color="#0066cc">ISBN 0-412-99391-0</font></a> </li>
+
     <li>Michael S. Waterman, <em>Introduction to Computational Biology: Sequences, Maps and Genomes</em>. CRC Press, 1995. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0412993910"><font color="#0066cc">ISBN 0-412-99391-0</font></a></li>
     <li>Mount, David W. <em>Bioinformatics: Sequence and Genome Analysis</em> Spring Harbor Press, May 2002. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0879696087"><font color="#0066cc">ISBN 0-87969-608-7</font></a> </li>
+
     <li>Mount, David W. <em>Bioinformatics: Sequence and Genome Analysis</em> Spring Harbor Press, May 2002. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0879696087"><font color="#0066cc">ISBN 0-87969-608-7</font></a></li>
     <li>Pachter, Lior and <a title="Bernd Sturmfels" href="http://en.wikipedia.org/wiki/Bernd_Sturmfels"><font color="#0066cc">Sturmfels, Bernd</font></a>. &quot;Algebraic Statistics for Computational Biology&quot; Cambridge University Press, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0521857007"><font color="#0066cc">ISBN 0-521-85700-7</font></a> </li>
+
     <li>Pachter, Lior and <a title="Bernd Sturmfels" href="http://en.wikipedia.org/wiki/Bernd_Sturmfels"><font color="#0066cc">Sturmfels, Bernd</font></a>. &quot;Algebraic Statistics for Computational Biology&quot; Cambridge University Press, 2005. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0521857007"><font color="#0066cc">ISBN 0-521-85700-7</font></a></li>
     <li>Pevzner, Pavel A. <em>Computational Molecular Biology: An Algorithmic Approach</em> The MIT Press, 2000. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0262161974"><font color="#0066cc">ISBN 0-262-16197-4</font></a> </li>
+
     <li>Pevzner, Pavel A. <em>Computational Molecular Biology: An Algorithmic Approach</em> The MIT Press, 2000. <a class="internal" href="http://en.wikipedia.org/w/index.php?title=Special:Booksources&amp;isbn=0262161974"><font color="#0066cc">ISBN 0-262-16197-4</font></a></li>
 
</ul>
 
</ul>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span class="mw-headline">External links</span></h2>
+
<p><span class="mw-headline"><font size="5">External links</font></span></p>
 
<div class="infobox sisterproject">
 
<div class="infobox sisterproject">
<div style="FLOAT: left">
+
<div style="float: left">
<div class="floatnone"><span><a class="image" title="" href="http://en.wikipedia.org/wiki/Image:Wiktionary-logo-en.png"></a></span></div>
+
<div class="floatnone">&nbsp;</div>
 
</div>
 
</div>
<div style="MARGIN-LEFT: 60px">
+
<div style="margin-left: 60px">
 
<div class="infobox sisterproject">
 
<div class="infobox sisterproject">
<div style="MARGIN-LEFT: 60px">
+
<div style="margin-left: 60px">
<div style="MARGIN-LEFT: 10px"><a class="extiw" title="v:Topic:Bioinformatics" href="http://en.wikiversity.org/wiki/Topic:Bioinformatics"><font color="#0066cc"></font></a></div>
+
<div style="margin-left: 10px"><a class="extiw" title="v:Topic:Bioinformatics" href="http://en.wikiversity.org/wiki/Topic:Bioinformatics"></a></div>
 
</div>
 
</div>
 
</div>
 
</div>
Line 183: Line 183:
 
     <li>
 
     <li>
 
     <ul>
 
     <ul>
         <li><a class="external text" title="http://bioinformatics.org/" rel="nofollow" href="http://bioinformatics.org/"><font color="#0066cc">Bioinformatics Organization (Bioinformatics.Org): The Open-Access Institute</font></a> </li>
+
        <li>[http://bioinformatics.ws Bioinformatics.ws]: Bioinformatics wiki site.</li>
         <li><a class="external text" title="http://www.embnet.org/" rel="nofollow" href="http://www.embnet.org/"><font color="#0066cc">EMBnet</font></a> </li>
+
        <li>[http://biomatics.org Biomatics.org]</li>
         <li><a class="external text" title="http://www.ebi.ac.uk/" rel="nofollow" href="http://www.ebi.ac.uk/"><font color="#0066cc">European Bioinformatics Institute</font></a> </li>
+
         <li><a class="external text" title="http://bioinformatics.org/" rel="nofollow" href="http://bioinformatics.org/"><font color="#0066cc">Bioinformatics Organization (Bioinformatics.Org): The Open-Access Institute</font></a></li>
         <li><a class="external text" title="http://www.embl.org/" rel="nofollow" href="http://www.embl.org/"><font color="#0066cc">European Molecular Biology Laboratory</font></a> </li>
+
         <li><a class="external text" title="http://www.embnet.org/" rel="nofollow" href="http://www.embnet.org/"><font color="#0066cc">EMBnet</font></a></li>
         <li><a class="external text" title="http://www.iscb.org/" rel="nofollow" href="http://www.iscb.org/"><font color="#0066cc">The International Society for Computational Biology</font></a> </li>
+
         <li><a class="external text" title="http://www.ebi.ac.uk/" rel="nofollow" href="http://www.ebi.ac.uk/"><font color="#0066cc">European Bioinformatics Institute</font></a></li>
         <li><a class="external text" title="http://www.ncbi.nlm.nih.gov/" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/"><font color="#0066cc">National Center for Biotechnology Information</font></a> </li>
+
         <li><a class="external text" title="http://www.embl.org/" rel="nofollow" href="http://www.embl.org/"><font color="#0066cc">European Molecular Biology Laboratory</font></a></li>
         <li><a class="external text" title="http://www.nih.gov" rel="nofollow" href="http://www.nih.gov/"><font color="#0066cc">National Institutes of Health homepage</font></a> </li>
+
         <li><a class="external text" title="http://www.iscb.org/" rel="nofollow" href="http://www.iscb.org/"><font color="#0066cc">The International Society for Computational Biology</font></a></li>
         <li><a class="external text" title="http://www.open-bio.org/" rel="nofollow" href="http://www.open-bio.org/"><font color="#0066cc">Open Bioinformatics Foundation: umbrella non-profit organization supporting certain open-source projects in bioinformatics</font></a> </li>
+
         <li><a class="external text" title="http://www.ncbi.nlm.nih.gov/" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/"><font color="#0066cc">National Center for Biotechnology Information</font></a></li>
         <li><a title="Swiss Institute of Bioinformatics" href="http://en.wikipedia.org/wiki/Swiss_Institute_of_Bioinformatics"><font color="#0066cc">Swiss Institute of Bioinformatics</font></a> </li>
+
         <li><a class="external text" title="http://www.nih.gov" rel="nofollow" href="http://www.nih.gov/"><font color="#0066cc">National Institutes of Health homepage</font></a></li>
         <li><a title="Wellcome Trust Sanger Institute" href="http://en.wikipedia.org/wiki/Wellcome_Trust_Sanger_Institute"><font color="#0066cc">Wellcome Trust Sanger Institute</font></a> </li>
+
         <li><a class="external text" title="http://www.open-bio.org/" rel="nofollow" href="http://www.open-bio.org/"><font color="#0066cc">Open Bioinformatics Foundation: umbrella non-profit organization supporting certain open-source projects in bioinformatics</font></a></li>
 +
         <li><a title="Swiss Institute of Bioinformatics" href="http://en.wikipedia.org/wiki/Swiss_Institute_of_Bioinformatics"><font color="#0066cc">Swiss Institute of Bioinformatics</font></a></li>
 +
         <li><a title="Wellcome Trust Sanger Institute" href="http://en.wikipedia.org/wiki/Wellcome_Trust_Sanger_Institute"><font color="#0066cc">Wellcome Trust Sanger Institute</font></a></li>
 
     </ul>
 
     </ul>
 
     </li>
 
     </li>
Line 199: Line 201:
 
     <li>Major Journals
 
     <li>Major Journals
 
     <ul>
 
     <ul>
         <li><a class="external text" title="http://www.almob.org/" rel="nofollow" href="http://www.almob.org/"><font color="#0066cc">Algorithms in Molecular Biology</font></a> </li>
+
         <li><a class="external text" title="http://www.almob.org/" rel="nofollow" href="http://www.almob.org/"><font color="#0066cc">Algorithms in Molecular Biology</font></a></li>
         <li><a class="external text" title="http://bioinformatics.oupjournals.org/" rel="nofollow" href="http://bioinformatics.oupjournals.org/"><font color="#0066cc">Bioinformatics journal</font></a> </li>
+
         <li><a class="external text" title="http://bioinformatics.oupjournals.org/" rel="nofollow" href="http://bioinformatics.oupjournals.org/"><font color="#0066cc">Bioinformatics journal</font></a></li>
         <li><a class="external text" title="http://www.biomedcentral.com/bmcbioinformatics" rel="nofollow" href="http://www.biomedcentral.com/bmcbioinformatics"><font color="#0066cc">BMC Bioinformatics journal</font></a> </li>
+
         <li><a class="external text" title="http://www.biomedcentral.com/bmcbioinformatics" rel="nofollow" href="http://www.biomedcentral.com/bmcbioinformatics"><font color="#0066cc">BMC Bioinformatics journal</font></a></li>
         <li><a class="external text" title="http://bib.oxfordjournals.org/" rel="nofollow" href="http://bib.oxfordjournals.org/"><font color="#0066cc">Briefings in Bioinformatics</font></a> </li>
+
         <li><a class="external text" title="http://bib.oxfordjournals.org/" rel="nofollow" href="http://bib.oxfordjournals.org/"><font color="#0066cc">Briefings in Bioinformatics</font></a></li>
         <li><a class="external text" title="http://www.la-press.com/evolbio.htm" rel="nofollow" href="http://www.la-press.com/evolbio.htm"><font color="#0066cc">Evolutionary Bioinformatics</font></a> </li>
+
         <li><a class="external text" title="http://www.la-press.com/evolbio.htm" rel="nofollow" href="http://www.la-press.com/evolbio.htm"><font color="#0066cc">Evolutionary Bioinformatics</font></a></li>
         <li><a class="external text" title="http://www.genome.org" rel="nofollow" href="http://www.genome.org/"><font color="#0066cc">Genome Research</font></a> </li>
+
         <li><a class="external text" title="http://www.genome.org" rel="nofollow" href="http://www.genome.org/"><font color="#0066cc">Genome Research</font></a></li>
         <li><a class="external text" title="http://www.bepress.com/ijb/" rel="nofollow" href="http://www.bepress.com/ijb/"><font color="#0066cc">The International Journal of Biostatistics</font></a> </li>
+
         <li><a class="external text" title="http://www.bepress.com/ijb/" rel="nofollow" href="http://www.bepress.com/ijb/"><font color="#0066cc">The International Journal of Biostatistics</font></a></li>
         <li><a class="external text" title="http://www.liebertpub.com/publication.aspx?pub_id=31" rel="nofollow" href="http://www.liebertpub.com/publication.aspx?pub_id=31"><font color="#0066cc">Journal of Computational Biology</font></a> </li>
+
         <li><a class="external text" title="http://www.liebertpub.com/publication.aspx?pub_id=31" rel="nofollow" href="http://www.liebertpub.com/publication.aspx?pub_id=31"><font color="#0066cc">Journal of Computational Biology</font></a></li>
         <li><a class="external text" title="http://www.nature.com/msb/index.html" rel="nofollow" href="http://www.nature.com/msb/index.html"><font color="#0066cc">Molecular Systems Biology</font></a> </li>
+
         <li><a class="external text" title="http://www.nature.com/msb/index.html" rel="nofollow" href="http://www.nature.com/msb/index.html"><font color="#0066cc">Molecular Systems Biology</font></a></li>
         <li><a class="external text" title="http://compbiol.plosjournals.org" rel="nofollow" href="http://compbiol.plosjournals.org/"><font color="#0066cc">PLoS Computational Biology</font></a> </li>
+
         <li><a class="external text" title="http://compbiol.plosjournals.org" rel="nofollow" href="http://compbiol.plosjournals.org/"><font color="#0066cc">PLoS Computational Biology</font></a></li>
         <li><a class="external text" title="http://www.bepress.com/sagmb/" rel="nofollow" href="http://www.bepress.com/sagmb/"><font color="#0066cc">Statistical Applications in Genetic and Molecular Biology</font></a> </li>
+
         <li><a class="external text" title="http://www.bepress.com/sagmb/" rel="nofollow" href="http://www.bepress.com/sagmb/"><font color="#0066cc">Statistical Applications in Genetic and Molecular Biology</font></a></li>
 
     </ul>
 
     </ul>
 
     </li>
 
     </li>
Line 216: Line 218:
 
     <li>Other sites
 
     <li>Other sites
 
     <ul>
 
     <ul>
         <li><a class="external text" title="http://www.biostatsresearch.com/repository/" rel="nofollow" href="http://www.biostatsresearch.com/repository/"><font color="#0066cc">The Collection of Biostatistics Research Archive</font></a> </li>
+
         <li><a class="external text" title="http://www.biostatsresearch.com/repository/" rel="nofollow" href="http://www.biostatsresearch.com/repository/"><font color="#0066cc">The Collection of Biostatistics Research Archive</font></a></li>
         <li><a class="external text" title="http://www.ornl.gov/TechResources/Human_Genome/research/informatics.html" rel="nofollow" href="http://www.ornl.gov/TechResources/Human_Genome/research/informatics.html"><font color="#0066cc">Human Genome Project and Bioinformatics</font></a> </li>
+
         <li><a class="external text" title="http://www.ornl.gov/TechResources/Human_Genome/research/informatics.html" rel="nofollow" href="http://www.ornl.gov/TechResources/Human_Genome/research/informatics.html"><font color="#0066cc">Human Genome Project and Bioinformatics</font></a></li>
         <li><a class="external text" title="http://dmoz.org/Science/Biology/Bioinformatics/Research_Groups/" rel="nofollow" href="http://dmoz.org/Science/Biology/Bioinformatics/Research_Groups/"><font color="#0066cc">List of Bioinformatics Research Groups</font></a> at the <a title="Open Directory Project" href="http://en.wikipedia.org/wiki/Open_Directory_Project"><font color="#0066cc">Open Directory Project</font></a> </li>
+
         <li><a class="external text" title="http://dmoz.org/Science/Biology/Bioinformatics/Research_Groups/" rel="nofollow" href="http://dmoz.org/Science/Biology/Bioinformatics/Research_Groups/"><font color="#0066cc">List of Bioinformatics Research Groups</font></a> at the <a title="Open Directory Project" href="http://en.wikipedia.org/wiki/Open_Directory_Project"><font color="#0066cc">Open Directory Project</font></a></li>
 
     </ul>
 
     </ul>
 
     </li>
 
     </li>
Line 224: Line 226:
 
<p><br />
 
<p><br />
 
<br />
 
<br />
</p>
+
&nbsp;</p>
 
<p>[http://bioinformatics.ws Bioinformatics.ws] | [http://biomics.org Biomics.org]<br />
 
<p>[http://bioinformatics.ws Bioinformatics.ws] | [http://biomics.org Biomics.org]<br />
 
<br />
 
<br />
Line 230: Line 232:
 
<br />
 
<br />
 
<br />
 
<br />
</p>
+
&nbsp;</p>

Latest revision as of 11:16, 23 November 2010

Bioinformatics involves the use of techniques including applied mathematics, informatics, statistics, computer science, chemistry, and biochemistry to solve biological problems. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and protein-protein interactions, and the modeling of evolution.

 111

Introduction

The terms bioinformatics and computational biology are often used interchangeably. However bioinformatics more properly refers to the creation and advancement of algorithms, computational and statistical techniques, and theory to solve formal and practical problems inspired from the management and analysis of biological data. Computational biology, on the other hand, refers to hypothesis-driven investigation of a specific biological problem using computers, carried out with experimental or simulated data, with the primary goal of discovery and the advancement of biological knowledge. Put more simply, bioinformatics is concerned with the information while computational biology is concerned with the hypotheses. A similar distinction is made by National Institutes of Health in their working definitions of Bioinformatics and Computational Biology, where it is further emphasized that there is a tight coupling of developments and knowledge between the more hypothesis-driven research in computational biology and technique-driven research in bioinformatics.

A common thread in projects in bioinformatics and computational biology is the use of mathematical tools to extract useful information from data produced by high-throughput biological techniques such as genome sequencing. A representative problem in bioinformatics is the assembly of high-quality genome sequences from fragmentary "shotgun" DNA sequencing. Other common problems include the study of gene regulation using data from microarrays or mass spectrometry.

 

Major research areas

 

Sequence analysis

Since the Phage Φ-X174 was sequenced in 1977, the DNA sequences of hundreds of organisms have been decoded and stored in databases. The information is analyzed to determine genes that encode polypeptides, as well as regulatory sequences. A comparison of genes within a species or between different species can show similarities between protein functions, or relations between species (the use of molecular systematics to construct phylogenetic trees). With the growing amount of data, it long ago became impractical to analyze DNA sequences manually. Today, computer programs are used to search the genome of thousands of organisms, containing billions of nucleotides. These programs would compensate for mutations (exchanged, deleted or inserted bases) in the DNA sequence, in order to identify sequences that are related, but not identical. A variant of this sequence alignment is used in the sequencing process itself. The so-called shotgun sequencing technique (which was used, for example, by The Institute for Genomic Research to sequence the first bacterial genome, Haemophilus influenzae) does not give a sequential list of nucleotides, but instead the sequences of thousands of small DNA fragments (each about 600-800 nucleotides long). The ends of these fragments overlap and, when aligned in the right way, make up the complete genome. Shotgun sequencing yields sequence data quickly, but the task of assembling the fragments can be quite complicated for larger genomes. In the case of the Human Genome Project, it took several months of CPU time (on a circa-2000 vintage DEC Alpha computer) to assemble the fragments. Shotgun sequencing is the method of choice for virtually all genomes sequenced today, and genome assembly algorithms are a critical area of bioinformatics research.

Another aspect of bioinformatics in sequence analysis is the automatic search for genes and regulatory sequences within a genome. Not all of the nucleotides within a genome are genes. Within the genome of higher organisms, large parts of the DNA do not serve any obvious purpose. This so-called junk DNA may, however, contain unrecognized functional elements. Bioinformatics helps to bridge the gap between genome and proteome projects--for example, in the use of DNA sequences for protein identification.

See also: sequence analysis, sequence profiling tool, sequence motif.

 

Genome annotation

In the context of genomics, annotation is the process of marking the genes and other biological features in a DNA sequence. The first genome annotation software system was designed in 1995 by Dr. Owen White, who was part of the team that sequenced and analyzed the first genome of a free-living organism to be decoded, the bacterium Haemophilus influenzae. Dr. White built a software system to find the genes (places in the DNA sequence that encode a protein), the transfer RNA, and other features, and to make initial assignments of function to those genes. Most current genome annotation systems work similarly, but the programs available for analysis of genomic DNA are constantly changing and improving.

 

Computational evolutionary biology

Evolutionary biology is the study of the origin and descent of species, as well as their change over time. Informatics has assisted evolutionary biologists in several key ways; it has enabled researchers to:

  • trace the evolution of a large number of organisms by measuring changes in their DNA, rather than through physical taxonomy or physiological observations alone,
  • more recently, compare entire genomes, which permits the study of more complex evolutionary events, such as gene duplication, lateral gene transfer, and the prediction of bacterial speciation factors,
  • build complex computational models of populations to predict the outcome of the system over time
  • track and share information on an increasingly large number of species and organisms

Future work endeavours to reconstruct the now more complex tree of life.

The area of research within computer science that uses genetic algorithms is sometimes confused with computational evolutionary biology, but the two areas are unrelated.

 

Measuring biodiversity

Biodiversity of an ecosystem might be defined as the total genomic complement of a particular environment, from all of the species present, whether it is a biofilm in an abandoned mine, a drop of sea water, a scoop of soil, or the entire biosphere of the planet Earth. Databases are used to collect the species names, descriptions, distributions, genetic information, status and size of populations, habitat needs, and how each organism interacts with other species. Specialized software programs are used to find, visualize, and analyze the information, and most importantly, communicate it to other people. Computer simulations model such things as population dynamics, or calculate the cumulative genetic health of a breeding pool (in agriculture) or endangered population (in conservation). One very exciting potential of this field is that entire DNA sequences, or genomes of endangered species can be preserved, allowing the results of Nature's genetic experiment to be remembered in silico, and possibly reused in the future, even if that species is eventually lost.

Important projects: Species 2000 project; uBio Project.

 

Analysis of gene expression

The expression of many genes can be determined by measuring mRNA levels with multiple techniques including microarrays, expressed cDNA sequence tag (EST) sequencing, serial analysis of gene expression (SAGE) tag sequencing, massively parallel signature sequencing (MPSS), or various applications of multiplexed in-situ hybridization. All of these techniques are extremely noise-prone and/or subject to bias in the biological measurement, and a major research area in computational biology involves developing statistical tools to separate signal from noise in high-throughput gene expression studies. Such studies are often used to determine the genes implicated in a disorder: one might compare microarray data from cancerous epithelial cells to data from non-cancerous cells to determine the transcripts that are up-regulated and down-regulated in a particular population of cancer cells.

 

Analysis of regulation

Regulation is the complex orchestration of events starting with an extra-cellular signal and ultimately leading to an increase or decrease in the activity of one or more protein molecules. Bioinformatics techniques have been applied to explore various steps in this process. For example, promoter analysis involves the elucidation and study of sequence motifs in the genomic region surrounding the coding region of a gene. These motifs influence the extent to which that region is transcribed into mRNA. Expression data can be used to infer gene regulation: one might compare microarray data from a wide variety of states of an organism to form hypotheses about the genes involved in each state. In a single-cell organism, one might compare stages of the cell cycle, along with various stress conditions (heat shock, starvation, etc.). One can then apply clustering algorithms to that expression data to determine which genes are co-expressed. For example, the upstream regions (promoters) of co-expressed genes can be searched for over-represented regulatory elements.

 

Analysis of protein expression

Protein microarrays and high throughput (HT) mass spectrometry (MS) can provide a snapshot of the proteins present in a biological sample. Bioinformatics is very much involved in making sense of protein microarray and HT MS data; the former approach faces similar problems as with microarrays targeted at mRNA, the latter involves the problem of matching large amounts of mass data against predicted masses from protein sequence databases, and the complicated statistical analysis of samples where multiple, but incomplete peptides from each protein are detected.

 

Analysis of mutations in cancer

Massive sequencing efforts are currently underway to identify point mutations in a variety of genes in cancer. The sheer volume of data produced requires automated systems to read sequence data, and to compare the sequencing results to the known sequence of the human genome, including known germline polymorphisms.

Oligonucleotide microarrays, including comparative genomic hybridization and single nucleotide polymorphism arrays, able to probe simultaneously up to several hundred thousand sites throughout the genome are being used to identify chromosomal gains and losses in cancer. Hidden Markov model and change-point analysis methods are being developed to infer real copy number changes from often noisy data. Further informatics approaches are being developed to understand the implications of lesions found to be recurrent across many tumors.

Some modern tools (e.g. Quantum 3.1 ) provide tool for changing the protein sequence at specific sites through alterations to its amino acids and predict changes in the bioactivity after mutations.

 

Prediction of protein structure

Protein structure prediction is another important application of bioinformatics. The amino acid sequence of a protein, the so-called primary structure, can be easily determined from the sequence on the gene that codes for it. In the vast majority of cases, this primary structure uniquely determines a structure in its native environment. (Of course, there are exceptions, such as the bovine spongiform encephalopathy - aka Mad Cow Disease - prion.) Knowledge of this structure is vital in understanding the function of the protein. For lack of better terms, structural information is usually classified as one of secondary, tertiary and quaternary structure. A viable general solution to such predictions remains an open problem. As of now, most efforts have been directed towards heuristics that work most of the time.

One of the key ideas in bioinformatics is the notion of homology. In the genomic branch of bioinformatics, homology is used to predict the function of a gene: if the sequence of gene A, whose function is known, is homologous to the sequence of gene B, whose function is unknown, one could infer that B may share A's function. In the structural branch of bioinformatics, homology is used to determine which parts of a protein are important in structure formation and interaction with other proteins. In a technique called homology modeling, this information is used to predict the structure of a protein once the structure of a homologous protein is known. This currently remains the only way to predict protein structures reliably.

One example of this is the similar protein homology between hemoglobin in humans and the hemoglobin in legumes (leghemoglobin). Both serve the same purpose of transporting oxygen in the organism. Though both of these proteins have completely different amino acid sequences, their protein structures are virtually identical, which reflects their near identical purposes.

Other techniques for predicting protein structure include protein threading and de novo (from scratch) physics-based modeling.

See also structural motif and structural domain.

 

Comparative genomics

The core of comparative genome analysis is the establishment of the correspondence between genes (orthology analysis) or other genomic features in different organisms. It is these intergenomic maps that make it possible to trace the evolutionary processes responsible for the divergence of two genomes. A multitude of evolutionary events acting at various organizational levels shape genome evolution. At the lowest level, point mutations affect individual nucleotides. At a higher level, large chromosomal segments undergo duplication, lateral transfer, inversion, transposition, deletion and insertion. Ultimately, whole genomes are involved in processes of hybridization, polyploidization and endosymbiosis, often leading to rapid speciation. The complexity of genome evolution poses many exciting challenges to developers of mathematical models and algorithms, who have recourse to a spectra of algorithmic, statistical and mathematical techniques, ranging from exact, heuristics, fixed parameter and approximation algorithms for problems based on parsimony models to Markov Chain Monte Carlo algorithms for Bayesian analysis of problems based on probabilistic models.

Many of these studies are based on the homology detection and protein families computation.

See also comparative genomics, bayesian network and protein family.

 

Modeling biological systems

Systems biology involves the use of computer simulations of cellular subsystems (such as the networks of metabolites and enzymes which comprise metabolism, signal transduction pathways and gene regulatory networks) to both analyze and visualize the complex connections of these cellular processes. Artificial life or virtual evolution attempts to understand evolutionary processes via the computer simulation of simple (artificial) life forms.

 

High-throughput image analysis

Computational technologies are used to accelerate or fully automate the processing, quantification and analysis of large amounts of high-information-content biomedical imagery. Modern image analysis systems augment an observer's ability to make measurements from a large or complex set of images, by improving accuracy, objectivity, or speed. A fully developed analysis system may completely replace the observer. Although these systems are not unique to biomedical imagery, biomedical imaging is becoming more important for both diagnostics and research. Some examples are:

  • high-throughput and high-fidelity quantification and sub-cellular localization (high-content screening, cytohistopathology)
  • morphometrics
  • clinical image analysis and visualization
  • determining the real-time air-flow patterns in breathing lungs of living animals
  • quantifying occlusion size in real-time imagery from the development of and recovery during arterial injury
  • making behavioral observations from extended video recordings of laboratory animals
  • infrared measurements for metabolic activity determination

 

Software tools

First generation bioinformatics tools consisted of applications, usually with a text-based interface, which performed a specific task well. The computational biology tool best-known among biologists is probably BLAST, an algorithm for searching large databases of protein or DNA sequences. The NCBI provides a popular web-based implementation that searches their massive sequence databases. Also fairly early on, due to the amassing of sequence and annotation data, keyword search engines which were able to resolve gene and protein synonyms were important. Computer scripting languages such as Perl (thanks to its regular expressions handling facilities) and Python are often used to interface with biological databases and parse output from bioinformatics programs written in languages such as C or C++. Communities of bioinformatics programmers have set up free open source bioinformatics projects to develop and distribute the tools and modules they produce.

As the data sources expanded and diversified, both in content and geography, bioinformatic meta search engines, such as Sequence profiling tools, emerged to help find relevant information from several databases. These meta search engines might index data from a local server or even from a panel of third party services.

More recently, SOAP-based interfaces have been developed for a wide variety of bioinformatics applications allowing an application running on one computer in one part of the world to use algorithms, data and computing resources on servers in other parts of the world. A large availability of these SOAP-based bioinformatics web services, along with the open source bioinformatics collections, lead to the next generation of bioinformatics tools: the integrated bioinformatics platform. These tools range from a collection of standalone tools with a common data format under a single, slick standalone or web-based interface, to integrative and extensible bioinformatics workflow development environments.

 

See also

Related topics

  • Biocybernetics
  • Bioinformatics companies
  • Biologically-inspired computing
  • Biomedical informatics
  • Computational biology
  • Computational biomodeling
  • Computational genomics
  • Dot plot (bioinformatics)
  • Metabolic network modelling
  • Molecular modelling
  • Morphometrics
  • Natural computation
  • Pharmaceutical company
  • Protein-protein interaction prediction
  • List of numerical analysis software

 

Related fields

  • Applied mathematics
  • Artificial intelligence
  • Biology
  • Cheminformatics
  • Computational biology
  • Computational science
  • Computer science
  • Cybernetics
  • Informatics
  • Mathematical biology
  • Neuroinformatics
  • Scientific computing
  • Statistics
  • Systems biology
  • Theoretical biology

 

References

  • Aluru, Srinivas, ed. Handbook of Computational Molecular Biology. Chapman & Hall/Crc, 2006. ISBN 1584884061 (Chapman & Hall/Crc Computer and Information Science Series)
  • Baldi, P and Brunak, S, Bioinformatics: The Machine Learning Approach, 2nd edition. MIT Press, 2001. ISBN 0-262-02506-X
  • Barnes, M.R. and Gray, I.C., eds., Bioinformatics for Geneticists, first edition. Wiley, 2003. ISBN 0-470-84394-2
  • Baxevanis, A.D. and Ouellette, B.F.F., eds., Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, third edition. Wiley, 2005. ISBN 0-471-47878-4
  • Baxevanis, A.D., Petsko, G.A., Stein, L.D., and Stormo, G.D., eds., Current Protocols in Bioinformatics. Wiley, 2007. ISBN 0-471-25093-7
  • Claverie, J.M. and C. Notredame, Bioinformatics for Dummies. Wiley, 2003. ISBN 0-7645-1696-5
  • Cristianini, N. and Hahn, M. Introduction to Computational Genomics, Cambridge University Press, 2006. (ISBN 9780521671910 | ISBN 0521671914)
  • Durbin, R., S. Eddy, A. Krogh and G. Mitchison, Biological sequence analysis. Cambridge University Press, 1998. ISBN 0-521-62971-3
  • Gilbert, D. Bioinformatics software resources. Briefings in Bioinformatics, Briefings in Bioinformatics, 2004 5(3):300-304.
  • Keedwell, E., Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to Bioinformatics Problems. Wiley, 2005. ISBN 0-470-02175-6
  • Kohane, et al. Microarrays for an Integrative Genomics. The MIT Press, 2002. ISBN 0-262-11271-X
  • Lund, O. et al. Immunological Bioinformatics. The MIT Press, 2005. ISBN 0-262-12280-4
  • Michael S. Waterman, Introduction to Computational Biology: Sequences, Maps and Genomes. CRC Press, 1995. ISBN 0-412-99391-0
  • Mount, David W. Bioinformatics: Sequence and Genome Analysis Spring Harbor Press, May 2002. ISBN 0-87969-608-7
  • Pachter, Lior and Sturmfels, Bernd. "Algebraic Statistics for Computational Biology" Cambridge University Press, 2005. ISBN 0-521-85700-7
  • Pevzner, Pavel A. Computational Molecular Biology: An Algorithmic Approach The MIT Press, 2000. ISBN 0-262-16197-4

 

External links

 



 

Bioinformatics.ws | Biomics.org