Open main menu

Opengenome.net β

Changes

Synthetic biology

51,398 bytes added, 09:44, 22 May 2010
no edit summary
<p><strong>Synthetic biology</strong> is a new area of <font color="#0645ad">biological</font> research that combines <font color="#0645ad">science</font> and <font color="#0645ad">engineering</font>. Synthetic biology emcompasses a variety of different approaches, methodologies and disciplines, and many different definitions exist. What they all have in common, however, is that they see synthetic biology as the design and construction of new biological functions and systems not found in nature.</p>
<div class="thumb tright">
<div style="WIDTH: 222px" class="thumbinner"><img class="thumbimage" alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/8/83/UT_HelloWorld.jpg/220px-UT_HelloWorld.jpg" width="220" height="216" />
<div class="thumbcaption">
<div class="magnify"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png" width="15" height="11" /></div>
A light programmable biofilm made by the UT Austin / UCSF team during the 2004 <font color="#3366bb">Synthetic Biology competition</font>, displaying &quot;<font color="#0645ad">Hello World</font>&quot;</div>
</div>
</div>

<h2><span id="History_of_the_term" class="mw-headline">History of the term</span></h2>
<p>The term &quot;synthetic biology&quot; has a history spanning the twentieth century.<sup id="cite_ref-0" class="reference"><font size="2"><font color="#0645ad"><span>[</span>1<span>]</span></font></font></sup>. In 1974, the Polish geneticist <font color="#0645ad">Waclaw Szybalski</font> introduced the term &quot;synthetic biology&quot;<sup id="cite_ref-1" class="reference"><font size="2"><font color="#0645ad"><span>[</span>2<span>]</span></font></font></sup>, writing:</p>
<blockquote>
<p>Let me now comment on the question &quot;what next&quot;. Up to now we are working on the descriptive phase of molecular biology. ... But the real challenge will start when we enter the synthetic biology phase of research in our field. We will then devise new control elements and add these new modules to the existing genomes or build up wholly new genomes. This would be a field with the unlimited expansion potential and hardly any limitations to building &quot;new better control circuits&quot; and ..... finally other &quot;synthetic&quot; organisms, like a &quot;new better mouse&quot;. ... I am not concerned that we will run out exciting and novel ideas, ... in the synthetic biology, in general.</p>
</blockquote>
<p>When in 1978 the <font color="#0645ad">Nobel Prize in Physiology or Medicine</font> was awarded to Arber, Nathans and Smith for the discovery of <font color="#0645ad">restriction enzymes</font>, Waclaw Szybalski wrote in an editorial comment in the journal <em>Gene</em>:</p>
<blockquote>
<p>The work on restriction nucleases not only permits us easily to construct recombinant DNA molecules and to analyze individual genes, but also has led us into the new era of synthetic biology where not only existing genes are described and analyzed but also new gene arrangements can be constructed and evaluated.<sup id="cite_ref-2" class="reference"><font size="2"><font color="#0645ad"><span>[</span>3<span>]</span></font></font></sup></p>
</blockquote>
<p>Synthetic biology has also been used to describe an approach to biology that attempts to integrate different areas of research in order to create a holistic understanding. There is significant controversy over whether synthetic biology as currently practiced is in accordance with this holistic approach, which was associated with the anti-reductionist movements within biology during the late twentieth century.<sup style="WHITE-SPACE: nowrap" class="Template-Fact" title="This claim needs references to reliable sources from November 2009"><font size="2">[<em><font color="#0645ad">citation needed</font></em>]</font></sup></p>
<h2><span id="Biology" class="mw-headline">Biology</span></h2>
<p>Biologists are interested in learning more about how natural living systems work. One simple, direct way to test our current understanding of a natural living system is to build an instance (or version) of the system in accordance with our current understanding of the system. <font color="#3366bb">Michael Elowitz's</font> early work on the <font color="#0645ad">Repressilator</font> <font color="#3366bb">[3]</font> is one good example of such work. Elowitz had a model for how gene expression should work inside living cells. To test his model, he built a piece of DNA in accordance with his model, placed the DNA inside living cells, and watched what happened. Slight differences between observation and expectation highlight new science that may be well worth doing. Work of this sort often makes good use of mathematics to predict and study the dynamics of the biological system before experimentally constructing it. A wide variety of mathematical descriptions have been used with varying accuracy, including <font color="#0645ad">graph theory</font>, <font color="#0645ad">Boolean</font> networks, <font color="#0645ad">ordinary differential equations</font>, <font color="#0645ad">stochastic differential equations</font>, and <font color="#0645ad">Master equations</font> (in order of increasing accuracy). Good examples include the work of <font color="#3366bb">Adam Arkin</font>, <font color="#3366bb">Jim Collins</font> and <font color="#3366bb">Alexander van Oudenaarden</font>. See also the <font color="#3366bb">PBS Nova special on artificial life</font>.</p>
<h2><span id="Chemistry" class="mw-headline">Chemistry</span></h2>
<p><font color="#0645ad">Biological systems</font> are <font color="#0645ad">physical systems</font> that are made up of chemicals. Around 100 years ago, the science of <font color="#0645ad">chemistry</font> went through a transition from studying natural chemicals to trying to design and build new chemicals. This transition led to the field of <font color="#0645ad">synthetic chemistry</font>. In the same tradition, some aspects of synthetic biology can be viewed as an extension and application of synthetic chemistry to biology, and include work ranging from the creation of useful new biochemicals to studying the origins of life. <font color="#3366bb">Eric Kool's</font> group at <font color="#0645ad">Stanford</font>, the Foundation for Applied Molecular Evolution, <font color="#3366bb">Carlos Bustamante's</font> group at <font color="#0645ad">Berkeley</font>, and <font color="#3366bb">Jack Szostak's</font> group at <font color="#0645ad">Harvard</font>, David McMillen's group at University of Toronto are good examples of this tradition. Much of the improved economics and versatility of synthetic biology is driven by ongoing improvements in <font color="#0645ad">gene synthesis</font>.</p>
<h2><span id="Engineering" class="mw-headline">Engineering</span></h2>
<p>Engineers view biology as a <em>technology.</em> Synthetic Biology includes the broad redefinition and expansion of biotechnology, with the ultimate goals of being able to design and build engineered biological systems that process information, manipulate chemicals, fabricate materials and structures, produce energy, provide food, and maintain and enhance human health and our environment <sup id="cite_ref-3" class="reference"><font size="2"><font color="#0645ad"><span>[</span>4<span>]</span></font></font></sup> . A good example of these technologies include the work of <font color="#0645ad">Chris Voigt</font>, who redesigned the Type III <font color="#0645ad">secretion</font> system used by <em><font color="#0645ad">Salmonella</font> typhimurium</em> to secrete spider silk proteins, a strong elastic biomaterial, instead of its own natural infectious proteins. One aspect of Synthetic Biology which distinguishes it from conventional <font color="#0645ad">genetic engineering</font> is a heavy emphasis on developing foundational technologies that make the engineering of biology easier and more reliable. Good examples of engineering in synthetic biology include the pioneering work of Tim Gardner and <font color="#0645ad">Jim Collins</font> on an <font color="#3366bb">engineered genetic toggle switch</font>, a <font color="#0645ad">riboregulator</font>, the <font color="#3366bb">Registry of Standard Biological Parts</font>, and the International Genetically Engineered Machine competition <font color="#3366bb">(iGEM)</font>.</p>
<h2><span id="Re-writing" class="mw-headline">Re-writing</span></h2>
<p>Re-writers are Synthetic Biologists who are interested in testing the idea that since natural biological systems are so complicated, we would be better off re-building the natural systems that we care about, from the ground up, in order to provide engineered surrogates that are easier to understand and interact with. Re-writers draw inspiration from <font color="#0645ad">refactoring</font>, a process sometimes used to improve computer software. <font color="#0645ad">Drew Endy</font> and his <font color="#3366bb">group</font> have done some preliminary work on re-writing (e.g., <font color="#3366bb">Refactoring Bacteriophage T7</font>). Oligonucleotides harvested from a photolithographic or inkjet manufactured <font color="#0645ad">DNA chip</font> combined with DNA mismatch error-correction allows inexpensive large-scale changes of <font color="#0645ad">codons</font> in genetic systems to improve <font color="#0645ad">gene expression</font> or incorporate novel amino-acids (see <font color="#0645ad">George Church</font>'s and <font color="#ba0000">Anthony Forster</font>'s lab <font color="#3366bb">synthetic cell projects</font>.<sup id="cite_ref-4" class="reference"><font size="2"><font color="#0645ad"><span>[</span>5<span>]</span></font></font></sup> As in the T7 example above, this favors a synthesis-from-scratch approach.</p>
<h2><span id="Challenges" class="mw-headline">Challenges</span></h2>
<h3><span id="Opposition_to_Synthetic_Biology" class="mw-headline">Opposition to Synthetic Biology</span></h3>
<p>Opposition by civil society groups to Synthetic Biology has been led by the <font color="#0645ad">ETC Group</font> who have called for a global moratorium on developments in the field and for no synthetic organisms to be released from the lab. In 2006 38 civil society organizations authored an open letter opposing voluntary regulation of the field and in 2007 ETC Group released the first critical report on the societal impacts of synthetic biology which they dubbed &quot;Extreme Genetic Engineering&quot;.<sup id="cite_ref-5" class="reference"><font size="2"><font color="#0645ad"><span>[</span>6<span>]</span></font></font></sup>. Other groups opposing Synthetic Biology developments include <font color="#0645ad">Friends of the Earth</font>, <font color="#3366bb">Alliance for Humane Biotechnology</font>, <font color="#3366bb">International Center for Technology Assessment</font> and <font color="#3366bb">Centro Ecologico (Portuguese)</font>.</p>
<h3><span id="Safety_and_Security" class="mw-headline">Safety and Security</span></h3>
<p>In addition to numerous scientific and technical challenges, synthetic biology raises questions for ethics, biosecurity, biosafety, involvement of stakeholders and intellectual property<sup id="cite_ref-6" class="reference"><font size="2"><font color="#0645ad"><span>[</span>7<span>]</span></font></font></sup><sup id="cite_ref-7" class="reference"><font size="2"><font color="#0645ad"><span>[</span>8<span>]</span></font></font></sup>. To date, key stakeholders (especially in the US) have focused primarily on the biosecurity issues, especially the so-called <font color="#0645ad">dual-use</font> challenge. For example, while the study of synthetic biology may lead to more efficient ways to produce medical treatments (e.g. against malaria), it may also lead to synthesis or redesign of harmful pathogens (e.g., smallpox) by malicious actors<sup id="cite_ref-8" class="reference"><font size="2"><font color="#0645ad"><span>[</span>9<span>]</span></font></font></sup> . Proposals for <font color="#3366bb">licensing and monitoring</font> the various phases of gene and <font color="#0645ad">genome</font> synthesis began to appear in 2004. A 2007 <font color="#3366bb">study</font> compared several policy options for governing the security risks associated with synthetic biology. Other initiatives, such as <font color="#3366bb">OpenWetWare</font>, <font color="#3366bb">diybio</font>, <font color="#3366bb">biopunk</font>, <font color="#3366bb">biohack</font>, and possibly others, have attempted to integrate self-regulation in their proliferation of <font color="#0645ad">open source</font> synthetic biology projects. However the distributed and diffuse nature of open-source biotechnology may make it more difficult to track, regulate, or mitigate potential biosafety and biosecurity concerns<sup id="cite_ref-9" class="reference"><font size="2"><font color="#0645ad"><span>[</span>10<span>]</span></font></font></sup>.</p>
<p>An initiative for self-regulation has been proposed by the International Association Synthetic Biology<sup id="cite_ref-10" class="reference"><font size="2"><font color="#0645ad"><span>[</span>11<span>]</span></font></font></sup> that suggests some specific meassures to be implemented by the synthetic biology industry, especially DNA synthesis companies. Some scientists, however, argue for a more radical and forward looking approaches to improve safety and security issues. They suggest to use not only physical containment as safety meassure, but also trophic and semantic containment.Trophic containment includes for example the design of new and more robust forms of <font color="#0645ad">auxotrophy</font>, while semantic containment means the design and construction of completely novel <font color="#0645ad">orthogonal</font> life-forms<sup id="cite_ref-11" class="reference"><font size="2"><font color="#0645ad"><span>[</span>12<span>]</span></font></font></sup>.</p>
<h3><span id="Social_and_Ethical" class="mw-headline">Social and Ethical</span></h3>
<p>Online discussion of &ldquo;societal issues&rdquo; took place at the <font color="#3366bb">SYNBIOSAFE forum</font> on issues regarding ethics, safety, security, IPR, governance, and public perception <font color="#3366bb">(summary paper)</font>. On July 9-10, 2009, the National Academies' Committee of Science, Technology &amp; Law convened a symposium on <font color="#3366bb">&quot;Opportunities and Challenges in the Emerging Field of Synthetic Biology&quot;</font> (transcripts, audio, and presentations available).</p>
<p>Some efforts have been made to engage social issues &quot;upstream&quot; focus on the integral and mutually formative relations among scientific and other human practices. These approaches attempt to invent ongoing and regular forms of collaboration among synthetic biologists, ethicists, political analysts, funders, human scientists and civil society activists. These collaborations have consisted either of intensive, short term meetings, aimed at producing guidelines or regulations, or standing committees whose purpose is limited to protocol review or rule enforcement. Such work has proven valuable in identifying the ways in which synthetic biology intensifies already-known challenges in rDNA technologies. However, these forms are not suited to identifying new challenges as they emerge<sup id="cite_ref-12" class="reference"><font size="2"><font color="#0645ad"><span>[</span>13<span>]</span></font></font></sup>, and critics worry about uncritical complicity<sup id="cite_ref-13" class="reference"><font size="2"><font color="#0645ad"><span>[</span>14<span>]</span></font></font></sup>.</p>
<p>An example of efforts to develop ongoing collaboration is the <font color="#3366bb">&quot;Human Practices&quot;</font> component of the <font color="#3366bb">Synthetic Biology Engineering Research Center</font> in the US and the <font color="#3366bb">SYNBIOSAFE</font> project in Europe, coordinated by IDC<sup id="cite_ref-14" class="reference"><font size="2"><font color="#0645ad"><span>[</span>15<span>]</span></font></font></sup>, that investigated the biosafety, biosecurity and ethical aspects of synthetic biology. A report from the <font color="#0645ad">Woodrow Wilson Center</font> and the <font color="#0645ad">Hastings Center</font>, a prestigious <font color="#0645ad">bioethics</font> research institute, found that ethical concerns in synthetic biology have received scant attention<sup id="cite_ref-15" class="reference"><font size="2"><font color="#0645ad"><span>[</span>16<span>]</span></font></font></sup>.</p>
<p>In January 2009, the <font color="#0645ad">Alfred P. Sloan Foundation</font> funded the <font color="#0645ad">Woodrow Wilson Center</font>, the <font color="#0645ad">Hastings Center</font>, and the <font color="#0645ad">J. Craig Venter Institute</font> to examine the public perception, ethics, and policy implications of synthetic biology<sup id="cite_ref-16" class="reference"><font size="2"><font color="#0645ad"><span>[</span>17<span>]</span></font></font></sup>. Public perception and communication of synthetic biology is the main focus of <font color="#3366bb">COSY: Communicating Synthetic Biology</font>, that showed that in the general public synthetic biology is not seen as too different from 'traditional' genetic engineering <sup id="cite_ref-17" class="reference"><font size="2"><font color="#0645ad"><span>[</span>18<span>]</span></font></font></sup><sup id="cite_ref-18" class="reference"><font size="2"><font color="#0645ad"><span>[</span>19<span>]</span></font></font></sup>. To better communicate synthetic biology and its societal ramifications to a broader public, COSY and SYNBIOSAFE published a 38 min. documentary film in October 2009<font color="#3366bb">[4]</font>.</p>
<h2><span id="Key_enabling_technologies" class="mw-headline">Key enabling technologies</span></h2>
<p>There are several key enabling technologies that are critical to the growth of synthetic biology. The key concepts include standardization of biological parts and hierarchical abstraction to permit using those parts in increasingly complex synthetic systems. <sup id="cite_ref-19" class="reference"><font size="2"><font color="#0645ad"><span>[</span>20<span>]</span></font></font></sup>. Achieving this is greatly aided by basic technologies of reading and writing of DNA (sequencing and fabrication), which are improving in price/performance exponentially <font color="#3366bb">(Kurzweil 2001)</font>. Measurements under a variety of conditions are needed for accurate modeling and computer-aided-design (CAD).</p>
<h3><span id="Sequencing" class="mw-headline">Sequencing</span></h3>
<p>Synthetic biologists make use of <font color="#0645ad">DNA sequencing</font> in their work in several ways. First, large-scale genome sequencing efforts continue to provide a wealth of information on naturally occurring organisms. This information provides a rich substrate from which synthetic biologists can construct parts and devices. Second, synthetic biologists use sequencing to verify that they fabricated their engineered system as intended. Third, fast, cheap and reliable sequencing can also facilitate rapid detection and identification of synthetic systems and organisms.</p>
<h3><span id="Fabrication" class="mw-headline">Fabrication</span></h3>
<p>A critical limitation in synthetic biology today is the time and effort expended during fabrication of engineered genetic sequences. To speed up the cycle of design, fabrication, testing and redesign, synthetic biology requires more rapid and reliable <em>de novo</em> <font color="#0645ad">DNA synthesis</font> and assembly of fragments of DNA, in a process commonly referred to as <font color="#0645ad">gene synthesis</font>.</p>
<p>In 2002 researchers at <font color="#0645ad">SUNY Stony Brook</font> succeeded in synthesizing the 7741 base <font color="#0645ad">poliovirus</font> genome from its published sequence, producing the first synthetic organism. This took about two years of painstaking work.<sup id="cite_ref-20" class="reference"><font size="2"><font color="#0645ad"><span>[</span>21<span>]</span></font></font></sup> In 2003 the 5386 bp genome of the <font color="#0645ad">bacteriophage</font> <font color="#0645ad">Phi X 174</font> was assembled in about two weeks.<sup id="cite_ref-21" class="reference"><font size="2"><font color="#0645ad"><span>[</span>22<span>]</span></font></font></sup> In 2006, the same team, at the <font color="#0645ad">J. Craig Venter Institute</font>, has constructed and patented a synthetic genome of a novel minimal bacterium, <em><font color="#0645ad">Mycoplasma laboratorium</font></em> and is working on getting it functioning in a living cell.<sup id="cite_ref-22" class="reference"><font size="2"><font color="#0645ad"><span>[</span>23<span>]</span></font></font></sup><sup id="cite_ref-23" class="reference"><font size="2"><font color="#0645ad"><span>[</span>24<span>]</span></font></font></sup></p>
<p>In 2007 it was reported that several companies were offering the <font color="#0645ad">synthesis of genetic sequences</font> up to 2000 bp long, for a price of about $1 per base pair and a turnaround time of less than two weeks.<sup id="cite_ref-24" class="reference"><font size="2"><font color="#0645ad"><span>[</span>25<span>]</span></font></font></sup> As of the present date, September 2009, the price has dropped to less than $0.50 per base pair with some improvement in turn around time. Not only is the price judged lower than the cost of conventional cDNA cloning, the economics make it practical for researchers to design and purchase multiple variants of the same sequence to identify genes or proteins with optimized performance.</p>
<h3>&nbsp;<span id="Modeling" class="mw-headline">Modeling</span></h3>
<p>Models inform the design of engineered biological systems by allowing synthetic biologists to better predict system behavior prior to fabrication. Synthetic biology will benefit from better models of how biological molecules bind substrates and catalyze reactions, how DNA encodes the information needed to specify the cell and how multi-component integrated systems behave. Recently, multiscale models of gene regulatory networks have been developed that focus on synthetic biology applications. Simulations have been used that model all biomolecular interactions in transcription, translation, regulation, and induction of gene regulatory networks, guiding the design of synthetic systems. <sup id="cite_ref-25" class="reference"><font size="2"><font color="#0645ad"><span>[</span>26<span>]</span></font></font></sup></p>
<h3><span id="Measurement" class="mw-headline">Measurement</span></h3>
<p>Precise and accurate quantitative measurements of biological systems are crucial to improving understanding of biology. Such measurements often help to elucidate how biological systems work and provide the basis for model construction and validation. Differences between predicted and measured system behavior can identify gaps in understanding and explain why synthetic systems don't always behave as intended. Technologies which allow many parallel and time-dependent measurements will be especially useful in synthetic biology. <font color="#0645ad">Microscopy</font> and <font color="#0645ad">flow cytometry</font> are examples of useful measurement technologies.</p>
<h2><span id="See_also" class="mw-headline">See also</span></h2>
<table style="WIDTH: 100%; BACKGROUND: none transparent scroll repeat 0% 0%" cellspacing="0" cellpadding="0" class="multicol">
<tbody>
<tr>
<td valign="top" width="50%" align="left">
<ul>
<li><font color="#0645ad">Angela Belcher</font></li>
<li><font color="#ba0000">Ron Weiss</font></li>
<li><font color="#0645ad">BioBrick</font></li>
<li><font color="#0645ad">Bioengineering</font></li>
<li><font color="#0645ad">Biohacking</font></li>
<li><font color="#0645ad">Computational biology</font></li>
<li><font color="#0645ad">Computational biomodeling</font></li>
</ul>
</td>
<td valign="top" width="50%" align="left">
<ul>
<li><font color="#0645ad">IGEM</font></li>
<li><font color="#0645ad">List of emerging technologies</font></li>
<li><font color="#0645ad">Registry of Standard Biological Parts</font></li>
<li><font color="#0645ad">Synthetic genomics</font></li>
<li><font color="#0645ad">Synthetic morphology</font></li>
<li><font color="#0645ad">Systems biology</font></li>
<li><font color="#0645ad">Nucleic acid analogues</font></li>
<li><font color="#0645ad">Expanded genetic code</font></li>
</ul>
</td>
<td valign="top" width="50%" align="left"><font color="#0645ad"></font></td>
</tr>
</tbody>
</table>
<h2><span id="References" class="mw-headline">References</span></h2>
<div class="references-small">
<ol class="references">
<li id="cite_note-0"><strong><a href="#cite_ref-0"><font color="#0645ad">^</font></a></strong> Luis Campos, &quot;That Was the Synthetic Biology That Was&quot; in M. Schmidt, A. Kelle, A. Ganguli-Mitra and H. Vriend, eds., <em>Synthetic Biology: The Technoscience and Its Societal Consequences.</em> Springer Academic Publishing, 2010</li>
<li id="cite_note-1"><strong><a href="#cite_ref-1"><font color="#0645ad">^</font></a></strong> Waclaw Szybalski, <em>In Vivo and in Vitro Initiation of Transcription</em>, Page 405. In: A. Kohn and A. Shatkay (Eds.), Control of Gene Expression, pp. 23-24, and Discussion pp. 404-405 (Szybalski's concept of Synthetic Biology), 411-412, 415 - 417. New York: Plenum Press, 1974</li>
<li id="cite_note-2"><strong><a href="#cite_ref-2"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Szybalski, W; Skalka, A (November-1978). <a class="external text" href="http://www.sciencedirect.com/science?_ob=IssueURL&amp;_tockey=%23TOC%234941%231978%23999959996%23383739%23FLP%23&amp;_auth=y&amp;view=c&amp;_acct=C000050221&amp;_version=1&amp;_urlVersion=0&amp;_userid=10&amp;md5=cf7bbc6f0e4d37c1de98c80fc9b50a3e" rel="nofollow"><font color="#3366bb">&quot;Nobel prizes and restriction enzymes&quot;</font></a>. <em>Gene</em> <strong>4</strong> (3): 181&ndash;2. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1016%2F0378-1119%2878%2990016-1" rel="nofollow"><font color="#3366bb">10.1016/0378-1119(78)90016-1</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/744485" rel="nofollow"><font color="#3366bb">744485</font></a><span class="printonly">. <a class="external free" href="http://www.sciencedirect.com/science?_ob=IssueURL&amp;_tockey=%23TOC%234941%231978%23999959996%23383739%23FLP%23&amp;_auth=y&amp;view=c&amp;_acct=C000050221&amp;_version=1&amp;_urlVersion=0&amp;_userid=10&amp;md5=cf7bbc6f0e4d37c1de98c80fc9b50a3e" rel="nofollow"><font color="#3366bb">http://www.sciencedirect.com/science?_ob=IssueURL&amp;_tockey=%23TOC%234941%231978%23999959996%23383739%23FLP%23&amp;_auth=y&amp;view=c&amp;_acct=C000050221&amp;_version=1&amp;_urlVersion=0&amp;_userid=10&amp;md5=cf7bbc6f0e4d37c1de98c80fc9b50a3e</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Nobel+prizes+and+restriction+enzymes&amp;rft.jtitle=Gene&amp;rft.aulast=Szybalski&amp;rft.aufirst=W&amp;rft.au=Szybalski%2C%26%2332%3BW&amp;rft.au=Skalka%2C%26%2332%3BA&amp;rft.date=November-1978&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=181%E2%80%932&amp;rft_id=info:doi/10.1016%2F0378-1119%2878%2990016-1&amp;rft_id=info:pmid/744485&amp;rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DIssueURL%26_tockey%3D%2523TOC%25234941%25231978%2523999959996%2523383739%2523FLP%2523%26_auth%3Dy%26view%3Dc%26_acct%3DC000050221%26_version%3D1%26_urlVersion%3D0%26_userid%3D10%26md5%3Dcf7bbc6f0e4d37c1de98c80fc9b50a3e&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-3"><strong><a href="#cite_ref-3"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Chopra, Paras; Akhil Kamma. <a class="external text" href="http://www.bioinfo.de/isb/2006/06/0038/" rel="nofollow"><font color="#3366bb">&quot;Engineering life through Synthetic Biology&quot;</font></a>. <em>In Silico Biology</em> <strong>6</strong><span class="printonly">. <a class="external free" href="http://www.bioinfo.de/isb/2006/06/0038/" rel="nofollow"><font color="#3366bb">http://www.bioinfo.de/isb/2006/06/0038/</font></a></span><span class="reference-accessdate">. Retrieved 2008-06-09</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Engineering+life+through+Synthetic+Biology&amp;rft.jtitle=In+Silico+Biology&amp;rft.aulast=Chopra&amp;rft.aufirst=Paras&amp;rft.au=Chopra%2C%26%2332%3BParas&amp;rft.volume=6&amp;rft_id=http%3A%2F%2Fwww.bioinfo.de%2Fisb%2F2006%2F06%2F0038%2F&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-4"><strong><a href="#cite_ref-4"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Forster, AC; Church GM. (2006-08-22). <a class="external text" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;artid=1681520" rel="nofollow"><font color="#3366bb">&quot;Towards synthesis of a minimal cell&quot;</font></a>. <em>Mol Syst Biol.</em> <strong>2</strong>: 45. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1038%2Fmsb4100090" rel="nofollow"><font color="#3366bb">10.1038/msb4100090</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16924266" rel="nofollow"><font color="#3366bb">16924266</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Towards+synthesis+of+a+minimal+cell&amp;rft.jtitle=Mol+Syst+Biol.&amp;rft.aulast=Forster&amp;rft.aufirst=AC&amp;rft.au=Forster%2C%26%2332%3BAC&amp;rft.date=2006-08-22&amp;rft.volume=2&amp;rft.pages=45&amp;rft_id=info:doi/10.1038%2Fmsb4100090&amp;rft_id=info:pmid/16924266&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-5"><strong><a href="#cite_ref-5"><font color="#0645ad">^</font></a></strong> ETC Group <a class="external text" href="http://etcgroup.org/upload/publication/602/01/synbioreportweb.pdf" rel="nofollow"><font color="#3366bb">Extreme Genetic Engineering: ETC Group Releases Report on Synthetic Biology</font></a></li>
<li id="cite_note-6"><strong><a href="#cite_ref-6"><font color="#0645ad">^</font></a></strong> Schmidt M, Ganguli-Mitra A, Torgersen H, Kelle A, Deplazes A, Biller-Andorno N. 2009. <a class="external text" href="http://www.synbiosafe.eu/uploads/pdf/Schmidt_etal-2009-SSBJ.pdf" rel="nofollow"><font color="#3366bb">&quot;A priority paper for the societal and ethical aspects of synthetic biology. Systems and Synthetic Biology&quot;.</font></a> Vol.3(1-4):3-7.</li>
<li id="cite_note-7"><strong><a href="#cite_ref-7"><font color="#0645ad">^</font></a></strong> Schmidt M. Kelle A. Ganguli A, de Vriend H. (Eds.) 2009. <a class="external text" href="http://www.springer.com/biomed/book/978-90-481-2677-4" rel="nofollow"><font color="#3366bb">&quot;Synthetic Biology. The Technoscience and its Societal Consequences&quot;.</font></a> Springer Academic Publishing.</li>
<li id="cite_note-8"><strong><a href="#cite_ref-8"><font color="#0645ad">^</font></a></strong> Kelle A. 2009. <a class="external text" href="http://www.synbiosafe.eu/uploads/pdf/Kelle-2009-SSBJ.pdf" rel="nofollow"><font color="#3366bb">&quot;Ensuring the security of synthetic biology&mdash;towards a 5P governance strategy&quot;.</font></a> Systems and Synthetic Biology. Vol.3(1-4): 85-90.</li>
<li id="cite_note-9"><strong><a href="#cite_ref-9"><font color="#0645ad">^</font></a></strong> Schmidt M, 2008. <a class="external text" href="http://www.markusschmidt.eu/pdf/Diffusion_of_synthetic_biology.pdf" rel="nofollow"><font color="#3366bb">&quot;Diffusion of synthetic biology: a challenge to biosafety&quot;.</font></a> Systems and Synthetic Biology. Vol.2(1-2):1-6.</li>
<li id="cite_note-10"><strong><a href="#cite_ref-10"><font color="#0645ad">^</font></a></strong> Report of IASB <a class="external text" href="http://www.ia-sb.eu/tasks/sites/synthetic-biology/assets/File/pdf/iasb_report_biosecurity_syntheticbiology.pdf" rel="nofollow"><font color="#3366bb">&quot;Technical solutions for biosecurity in synthetic biology&quot;</font></a>, Munich, 2008.</li>
<li id="cite_note-11"><strong><a href="#cite_ref-11"><font color="#0645ad">^</font></a></strong> Marliere P. 2009. <a class="external text" href="http://www.synbiosafe.eu/uploads/pdf/Marliere-SSBJ-2009.pdf" rel="nofollow"><font color="#3366bb">&quot;The farther, the safer: a manifesto for securely navigating synthetic species away from the old living worldy&quot;.</font></a> Systems and Synthetic Biology. Vol.3(1-4):77-84.</li>
<li id="cite_note-12"><strong><a href="#cite_ref-12"><font color="#0645ad">^</font></a></strong> Schmidt M. 2008. Diffusion of synthetic biology: a challenge to biosafety. Systems and Synthetic Biology (online first) <a class="external text" href="http://www.synbiosafe.eu/uploads///pdf/Diffusion_of_synthetic_biology.pdf" rel="nofollow"><font color="#3366bb">DOI 10.1007/s11693-008-9018-z</font></a></li>
<li id="cite_note-13"><strong><a href="#cite_ref-13"><font color="#0645ad">^</font></a></strong> ETC Group <a class="external text" href="http://etcgroup.org/upload/publication/602/01/synbioreportweb.pdf" rel="nofollow"><font color="#3366bb">Extreme Genetic Engineering: ETC Group Releases Report on Synthetic Biology</font></a></li>
<li id="cite_note-14"><strong><a href="#cite_ref-14"><font color="#0645ad">^</font></a></strong> Organisation for International Dialogue and Conflict Management (IDC) <a class="external text" href="http://www.idialog.eu/index.php?page=biosafety-working-group" rel="nofollow"><font color="#3366bb">Biosafety Working Group</font></a></li>
<li id="cite_note-15"><strong><a href="#cite_ref-15"><font color="#0645ad">^</font></a></strong> WWCIS 2009 <a class="external text" href="http://www.synbioproject.org/library/publications/archive/synbio3/" rel="nofollow"><font color="#3366bb">Ethical Issues in Synthetic Biology. An Overview of the Debates</font></a></li>
<li id="cite_note-16"><strong><a href="#cite_ref-16"><font color="#0645ad">^</font></a></strong> <a class="external autonumber" href="http://www.thehastingscenter.org/News/Detail.aspx?id=3022" rel="nofollow"><font color="#3366bb">[1]</font></a> Parens E., Johnston J., Moses J. Ethical Issues in Synthetic Biology. 2009.</li>
<li id="cite_note-17"><strong><a href="#cite_ref-17"><font color="#0645ad">^</font></a></strong> Kronberger et al. 2009 <a class="external text" href="http://www.springerlink.com/content/r170x43868877p68/fulltext.pdf" rel="nofollow"><font color="#3366bb">Communicating Synthetic Biology: from the lab via the media to the broader public</font></a> Systems and Synthetic Biology. Vol.3(1-4): 19-26</li>
<li id="cite_note-18"><strong><a href="#cite_ref-18"><font color="#0645ad">^</font></a></strong> Cserer A, Seiringer A. 2009 <a class="external text" href="http://www.springerlink.com/content/r170x43868877p68/fulltext.pdf" rel="nofollow"><font color="#3366bb">Pictures of Synthetic Biology</font></a> Systems and Synthetic Biology. Vol.3(1-4): 27-35</li>
<li id="cite_note-19"><strong><a href="#cite_ref-19"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Group, Bio FAB; Baker D, Church G, Collins J, Endy D, Jacobson J, Keasling J, Modrich P, Smolke C, Weiss R (June-2006). &quot;Engineering life: building a fab for biology&quot;. <em><a title="Scientific American" href="/wiki/Scientific_American"><font color="#0645ad">Scientific American</font></a></em> <strong>294</strong> (6): 44&ndash;51. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1038%2Fscientificamerican0606-44" rel="nofollow"><font color="#3366bb">10.1038/scientificamerican0606-44</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16711359" rel="nofollow"><font color="#3366bb">16711359</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Engineering+life%3A+building+a+fab+for+biology&amp;rft.jtitle=%5B%5BScientific+American%5D%5D&amp;rft.aulast=Group&amp;rft.aufirst=Bio+FAB&amp;rft.au=Group%2C%26%2332%3BBio+FAB&amp;rft.date=June-2006&amp;rft.volume=294&amp;rft.issue=6&amp;rft.pages=44%E2%80%9351&amp;rft_id=info:doi/10.1038%2Fscientificamerican0606-44&amp;rft_id=info:pmid/16711359&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-20"><strong><a href="#cite_ref-20"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Couzin J (2002). &quot;Virology. Active poliovirus baked from scratch&quot;. <em>Science</em> <strong>297</strong> (5579): 174&ndash;5. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1126%2Fscience.297.5579.174b" rel="nofollow"><font color="#3366bb">10.1126/science.297.5579.174b</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/12114601" rel="nofollow"><font color="#3366bb">12114601</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Virology.+Active+poliovirus+baked+from+scratch&amp;rft.jtitle=Science&amp;rft.aulast=Couzin+J&amp;rft.au=Couzin+J&amp;rft.date=2002&amp;rft.volume=297&amp;rft.issue=5579&amp;rft.pages=174%E2%80%935&amp;rft_id=info:doi/10.1126%2Fscience.297.5579.174b&amp;rft_id=info:pmid/12114601&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-21"><strong><a href="#cite_ref-21"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Smith, Hamilton O.; Clyde A. Hutchison, Cynthia Pfannkoch, J. Craig Venter (2003-12-23). <a class="external text" href="http://www.pnas.org/cgi/content/abstract/100/26/15440" rel="nofollow"><font color="#3366bb">&quot;Generating a synthetic genome by whole genome assembly: {phi}X174 bacteriophage from synthetic oligonucleotides&quot;</font></a>. <em>Proceedings of the National Academy of Sciences</em> <strong>100</strong> (26): 15440&ndash;15445. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1073%2Fpnas.2237126100" rel="nofollow"><font color="#3366bb">10.1073/pnas.2237126100</font></a><span class="printonly">. <a class="external free" href="http://www.pnas.org/cgi/content/abstract/100/26/15440" rel="nofollow"><font color="#3366bb">http://www.pnas.org/cgi/content/abstract/100/26/15440</font></a></span><span class="reference-accessdate">. Retrieved 2007-10-08</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Generating+a+synthetic+genome+by+whole+genome+assembly%3A+%7Bphi%7DX174+bacteriophage+from+synthetic+oligonucleotides&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&amp;rft.aulast=Smith&amp;rft.aufirst=Hamilton+O.&amp;rft.au=Smith%2C%26%2332%3BHamilton+O.&amp;rft.date=2003-12-23&amp;rft.volume=100&amp;rft.issue=26&amp;rft.pages=15440%E2%80%9315445&amp;rft_id=info:doi/10.1073%2Fpnas.2237126100&amp;rft_id=http%3A%2F%2Fwww.pnas.org%2Fcgi%2Fcontent%2Fabstract%2F100%2F26%2F15440&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-22"><strong><a href="#cite_ref-22"><font color="#0645ad">^</font></a></strong> <span class="citation news">Wade, Nicholas (2007-06-29). <a class="external text" href="http://www.nytimes.com/2007/06/29/science/29cells.html" rel="nofollow"><font color="#3366bb">&quot;Scientists Transplant Genome of Bacteria&quot;</font></a>. <em>The New York Times</em>. <a title="International Standard Serial Number" href="/wiki/International_Standard_Serial_Number"><font color="#0645ad">ISSN</font></a>&nbsp;<a class="external text" href="http://www.worldcat.org/issn/0362-4331" rel="nofollow"><font color="#3366bb">0362-4331</font></a><span class="printonly">. <a class="external free" href="http://www.nytimes.com/2007/06/29/science/29cells.html" rel="nofollow"><font color="#3366bb">http://www.nytimes.com/2007/06/29/science/29cells.html</font></a></span><span class="reference-accessdate">. Retrieved 2007-12-28</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Scientists+Transplant+Genome+of+Bacteria&amp;rft.jtitle=The+New+York+Times&amp;rft.aulast=Wade&amp;rft.aufirst=Nicholas&amp;rft.au=Wade%2C%26%2332%3BNicholas&amp;rft.date=2007-06-29&amp;rft.issn=0362-4331&amp;rft_id=http%3A%2F%2Fwww.nytimes.com%2F2007%2F06%2F29%2Fscience%2F29cells.html&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-23"><strong><a href="#cite_ref-23"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Gibson, DG; Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA 3rd, Smith HO. (2008-01-24). &quot;Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome&quot;. <em>Science</em> <strong>319</strong> (5867): 1215&ndash;20. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" href="http://dx.doi.org/10.1126%2Fscience.1151721" rel="nofollow"><font color="#3366bb">10.1126/science.1151721</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/18218864" rel="nofollow"><font color="#3366bb">18218864</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Complete+chemical+synthesis%2C+assembly%2C+and+cloning+of+a+Mycoplasma+genitalium%0Agenome&amp;rft.jtitle=Science&amp;rft.aulast=Gibson&amp;rft.aufirst=DG&amp;rft.au=Gibson%2C%26%2332%3BDG&amp;rft.date=2008-01-24&amp;rft.volume=319&amp;rft.issue=5867&amp;rft.pages=1215%E2%80%9320&amp;rft_id=info:doi/10.1126%2Fscience.1151721&amp;rft_id=info:pmid/18218864&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-24"><strong><a href="#cite_ref-24"><font color="#0645ad">^</font></a></strong> <span class="citation news">Pollack, Andrew (2007-09-12). <a class="external text" href="http://www.nytimes.com/2007/09/12/technology/techspecial/12gene.html?pagewanted=2&amp;_r=1" rel="nofollow"><font color="#3366bb">&quot;How Do You Like Your Genes? Biofabs Take Orders&quot;</font></a>. <em>The New York Times</em>. <a title="International Standard Serial Number" href="/wiki/International_Standard_Serial_Number"><font color="#0645ad">ISSN</font></a>&nbsp;<a class="external text" href="http://www.worldcat.org/issn/0362-4331" rel="nofollow"><font color="#3366bb">0362-4331</font></a><span class="printonly">. <a class="external free" href="http://www.nytimes.com/2007/09/12/technology/techspecial/12gene.html?pagewanted=2&amp;_r=1" rel="nofollow"><font color="#3366bb">http://www.nytimes.com/2007/09/12/technology/techspecial/12gene.html?pagewanted=2&amp;_r=1</font></a></span><span class="reference-accessdate">. Retrieved 2007-12-28</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=How+Do+You+Like+Your+Genes%3F+Biofabs+Take+Orders&amp;rft.jtitle=The+New+York+Times&amp;rft.aulast=Pollack&amp;rft.aufirst=Andrew&amp;rft.au=Pollack%2C%26%2332%3BAndrew&amp;rft.date=2007-09-12&amp;rft.issn=0362-4331&amp;rft_id=http%3A%2F%2Fwww.nytimes.com%2F2007%2F09%2F12%2Ftechnology%2Ftechspecial%2F12gene.html%3Fpagewanted%3D2%26_r%3D1&amp;rfr_id=info:sid/en.wikipedia.org:Synthetic_biology"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-25"><strong><a href="#cite_ref-25"><font color="#0645ad">^</font></a></strong> Y. N. Kaznessis, (2007) &quot;Models for Synthetic Biology&quot;, BMC Systems Biology, 2007, 1:47 doi:10.1186/1752-0509-1-47 <a class="external autonumber" href="http://www.biomedcentral.com/1752-0509/1/47" rel="nofollow"><font color="#3366bb">[2]</font></a>.</li>
</ol>
</div>
<h2>&nbsp;<span id="External_links" class="mw-headline">External links</span></h2>
<ul>
<li><a class="external text" href="http://syntheticbiology.org" rel="nofollow"><font color="#3366bb">syntheticbiology.org community site</font></a></li>
<li><a class="external text" href="http://www.etcgroup.org/en/issues/synthetic_biology" rel="nofollow"><font color="#3366bb">ETC Group resources on Synthetic Biology</font></a></li>
<li><a class="external text" href="http://www.synbioproject.org" rel="nofollow"><font color="#3366bb">Synthetic Biology Project</font></a> Synthetic biology news, events, publications and more.</li>
<li><a class="external text" href="http://www.bu.edu/abl/" rel="nofollow"><font color="#3366bb">Applied BioDynamics Laboratory: Boston University</font></a></li>
<li><a class="external text" href="http://hackteria.org/wiki/images/a/a1/Handbook.pdf" rel="nofollow"><font color="#3366bb">Handbook - Synthetic Biology for Beginners - CEMA, Srishti, Bangalore</font></a></li>
<li><a class="external text" href="http://www.thehastingscenter.org/Issues/Default.aspx?v=2392" rel="nofollow"><font color="#3366bb">Hastings Center synthetic biology issue page</font></a> contains research and resources on the ethical issues in synthetic biology.</li>
<li><a class="external text" href="http://www.synberc.org" rel="nofollow"><font color="#3366bb">Synthetic Biology Engineering Research Center (SynBERC)</font></a> A NSF-funded multi-university effort to lay the foundations for synthetic biology.</li>
<li><a class="external text" href="http://www.plluisi.org" rel="nofollow"><font color="#3366bb">Pier Luigi Luisi's synthetic biology group</font></a></li>
<li><a class="external text" href="http://www.synbiosafe.eu" rel="nofollow"><font color="#3366bb">SYNBIOSAFE: Safety and ethical aspects of synthetic biology</font></a></li>
<li><a class="external text" href="http://www.ars-synthetica.net" rel="nofollow"><font color="#3366bb">Ars Synthetica</font></a> A multimedia forum for engaging specialists and non-specialists in an informed, ethical, and democratic dialogue on the emerging field of synthetic biology.</li>
<li><a class="external text" href="http://web.rollins.edu/~tlairson/tech/synlife5.html" rel="nofollow"><font color="#3366bb">Article on applications of synthetic biology</font></a></li>
<li><a class="external text" href="http://2009.igem.org/Team:ArtScienceBangalore" rel="nofollow"><font color="#3366bb">Art&amp; Synthetic Biology</font></a></li>
<li><a class="external text" href="http://synbioss.sourceforge.net" rel="nofollow"><font color="#3366bb">The Synthetic Biology Software Suite. Open license software for modeling synthetic gene regulatory networks</font></a></li>
<li><a class="external text" href="http://www.biobuilder.org/" rel="nofollow"><font color="#3366bb">Biobuilder.org</font></a> an educational website to engage and inform a wider audience of synthetic biology enthusiasts</li>
<li><a class="external text" href="http://www.ia-sb.eu" rel="nofollow"><font color="#3366bb">International Association Synthetic Biology</font></a></li>
<li><a class="external text" href="http://www.synbiosafe.eu/index.php?page=popular-press" rel="nofollow"><font color="#3366bb">Collection of newspaper articles on SB</font></a></li>
<li><a class="external text" href="http://2009.igem.org/wiki/images/0/0d/Sins,_Ethics_and_Biology.pdf" rel="nofollow"><font color="#3366bb">A review on Human Practices and Synthetic Biology</font></a></li>
</ul>
<h3><span id="Multimedia" class="mw-headline">Multimedia</span></h3>
<ul>
<li><a class="external text" href="http://fora.tv/2008/11/17/Drew_Endy_and_Jim_Thomas_Debate_Synthetic_Biology" rel="nofollow"><font color="#3366bb">Public 'Long Now' Debate on Synthetic Biology between Jim Thomas and Drew Endy</font></a></li>
<li><a class="external text" href="http://www.synbiosafe.eu/index.php?page=expert-interviews" rel="nofollow"><font color="#3366bb">Video interviews with synthetic biology experts, NGOs and funding institutions</font></a></li>
<li><a class="external text" href="http://www.synbiosafe.eu/DVD" rel="nofollow"><font color="#3366bb">Documentary Film on synthetic biology and its societal aspects (DVD)</font></a></li>
<li><a class="external text" href="http://acdis.illinois.edu/students/courses-current/focal-point-seminar/Blanke-syntheticbio.html/" rel="nofollow"><font color="#3366bb">Synthetic Biology</font></a>- video of lecture by Steven Blanke, Professor of Microbiology at the University of Illinois, hosted by the Program in Arms Control, Disarmament, and International Security (ACDIS), November 19, 2009. Topics include: definitions and principles of synthetic biology; BioBricks; Internationally Genetically Engineered Machine (iGEM) competition; applications for commercial use, biosecurity; risk assessments; Biological and Toxin Weapons Convention; models of institutional governance.</li>
</ul>