Difference between revisions of "Genomics"

From Opengenome.net
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<font size="5">&nbsp;</font>
+
<p><font size="3"><strong>Genomics</strong> is the [[omics]] study of [[gene]]s of individual organisms,&nbsp;populations, and [[species]]. <br />
<h3><span style="FONT-WEIGHT: bold"><font size="5">유전체학&nbsp; </font></span></h3>
+
</font></p>
<p><font color="#0000ff">유전체</font>란 동물의&nbsp; 핵속에 들어있는 유전자 전체를 말하며(포유동물의 경우 약 2만5천에서 3만개의 뮤전자로 구성됨), 게놈(genome)이라고도 하며 유전정보 전체를 말함. 유전체학은 생명체내의 모든 유전자들의 구조 및 기능을 밝히는 연구를 말함. 주로 유전자 지도작성, 돌연변이동물(형질전환동물, 유전자제거동물, 화학적돌연변이동물, 자연돌연변이동물)의 생산 및 분석, 질병유전자 및 특수형질과 관련한 원인 유전자구명, 분자표지인자(DNA marker)개발연구 등을 포함한다.</p>
+
<p><font size="3">It is also a paradigm of performing biological science that deviates from&nbsp;investigating single genes, their functions, and roles. <br />
 +
</font></p>
 +
<p><font size="3">The main reason of an independent biological discipline is that it deals with very large sets of genetic information to automatically analyze information using interaction and network concepts. Genomics inevitably employs high performance computing and bioinformatics technologies.</font><br />
 +
</p>
 +
<p><span class="editsection"></span><span class="mw-headline"><font size="4"><br />
 +
</font></span></p>
 +
<p><strong><span class="mw-headline"><font size="4">History of the field</font></span></strong></p>
 +
<p><font size="3">Genomics was practically founded by [[Fred Sanger]] group in 1970s when they developed an automatic gene sequencing technique and completed the first genomes; namely bacteriophage &Phi;-X174; (5,368 bp) and the bovine mitochondrial genome.</font></p>
 +
<p><font size="3">In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.<sup class="reference" id="_ref-0">[1]</sup> In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.<sup class="reference" id="_ref-1">[2]</sup> The first DNA-based genome to be sequenced in its entirety was that of bacteriophage &Phi;-X174; (5,368 bp), sequenced by Frederick Sanger in 1977<sup class="reference" id="_ref-2">[3]</sup>. The first free-living organism to be sequenced was that of <em>Haemophilus influenzae</em> (1.8 Mb) in 1995, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by Sanger centre and the Human Genome Project in early 2001.</font></p>
 +
<p><font size="3">As of September 2007, the complete sequence was known of about 1879 viruses <sup class="reference" id="_ref-3">[4]</sup>, 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. <sup class="reference" id="_ref-4">[5]</sup> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <em>Haemophilus influenzae</em>. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (<em>Saccharomyces cerevisiae</em>) has long been an important model organism for the eukaryotic cell, while the fruit fly <em>Drosophila melanogaster</em> has been a very important tool (notably in early pre-molecular genetics). The worm <em>Caenorhabditis elegans</em> is an often used simple model for multicellular organisms. The zebrafish <em>Brachydanio rerio</em> is used for many developmental studies on the molecular level and the flower <em>Arabidopsis thaliana</em> is a model organism for flowering plants. The Japanese pufferfish (<em>Takifugu rubripes</em>) and the spotted green pufferfish (<em>Tetraodon nigroviridis</em>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup class="reference" id="_ref-5">[6]</sup> <sup class="reference" id="_ref-6">[7]</sup> The mammals dog (<em>Canis familiaris</em>), <sup class="reference" id="_ref-7">[8]</sup> brown rat (<em>Rattus norvegicus</em>), mouse (<em>Mus musculus</em>), and chimpanzee (<em>Pan troglodytes</em>) are all important model animals in medical research.</font></p>
 +
<p><font size="3">&nbsp;</font></p>
 +
<p><span class="editsection"></span><strong><span class="mw-headline"><font size="4">Bacteriophage Genomics</font></span></strong></p>
 +
<p><font size="3">Bacteriophages have played and continue to play a key role in bacterial genetics and molecular biology. Historically, they were used to define gene structure and gene regulation. Also the first genome to be sequenced was a bacteriophage. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying phage evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of prophage sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.<sup class="reference" id="_ref-McGrath_0">[9]</sup></font></p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><font color="#0000ff">게놈</font>이란 한 개체가 지닌 유전자 세트를 말하며 이는 생명 현상의 유지 및 모든 형질의 발현에 필요한 하나의 단위이다.&nbsp;인간의 게놈은 22쌍의[http://100.naver.com/100.php?id=87435 <font color="#0000ff"><u>상염색체</u></font>](<span 모양=""></span><span 물들일=""></span><span 색=""></span><span 몸=""></span>)와 1쌍의[http://100.naver.com/100.php?id=92131 <font color="#0000ff"><u>성염색체</u></font>], 즉 23쌍의 서로 다른 염색체로 이루어진다.인간세포 속의 세포핵에는 2중 나선형으로 꼬여 있는 23쌍, 46개의 염색체에 모든 유전정보가 담겨 있다. 유전정보를 담고 있는 물질은 DNA([http://100.naver.com/100.php?id=52655 <font color="#0000ff"><u>디옥시리보핵산</u></font>])이고, DNA는 A([http://100.naver.com/100.php?id=104156 <font color="#0000ff"><u>아데닌</u></font>]) &middot;G([http://100.naver.com/100.php?id=20986 <font color="#0000ff"><u>구아닌</u></font>]) &middot;C([http://100.naver.com/100.php?id=20986 <font color="#0000ff"><u>시토신</u></font>]) &middot;T([http://100.naver.com/100.php?id=100957 &nbsp;<font color="#0000ff"><u>티민</u></font>]) 등 4가지 염기의 다양한 조합으로 이루어져 있다. 이 염기들은 게놈상에서 수백만, 수억 만 번이나 반복되어 있는데, 이들 염기의 결합 순서를 파악하게 되면 각 생물들이 가지고 있는 고유한 염기배열을 알 수 있다. </p>
+
<p><span class="editsection"></span><strong><span class="mw-headline"><font size="4">Cyanobacteria Genomics</font></span></strong></p>
 +
<p><font size="3">At present there are 24 cyanobacteria for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <em>Prochlorococcus</em><em>Synechococcus</em> strains, <em>Trichodesmium erythraeum</em> IMS101 and <em>Crocosphaera watsonii</em> [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further <em>Prochlorococcus</em> and marine <em>Synechococcus</em> isolates, <em>Acaryochloris</em> and <em>Prochloron</em>, the N<sub>2</sub>-fixing filamentous cyanobacteria <em>Nodularia spumigena</em>, <em>Lyngbya aestuarii</em> and <em>Lyngbya majuscula</em>, as well as bacteriophages infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of photosynthesis, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.<sup class="reference" id="_ref-Herrero_0">[10]</sup></font> strains, seven marine </p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><font color="#0000ff">목표</font> </p>
+
<p><span class="editsection"></span><strong><span class="mw-headline"><font size="4">See also</font></span></strong></p>
<p>① 인간 유전자 8만개의 유전자 동정을 파악한다. </p>
+
<ul>
<p>② 인간의 DNA를 이루고 있는 30억 개의 화학적 염기배열을 결정한다. </p>
+
    <li><font size="3">[[Pangenomics]] and [[Pangenome]]</font> </li>
<p>[http://100.naver.com/100.php?id=47141<u><font color="#0000ff">데이터 베이스</font></u>] 정보를 기록한다.</p>
+
    <li><font size="3">[[Omics]] </font></li>
<p>④ 데이터 분석의 기술상의 문제를 개발&middot;보완한다.</p>
+
    <li><font size="3">[[Proteomics]] </font></li>
<p>⑤ [http://100.naver.com/100.php?id=46299<u><font color="#0000ff">프로젝트</font></u>]에 관한 도덕적&middot;법률적&middot;사회적인 쟁점에 대한 설명을 하는 것이다. </p>
+
    <li><font size="3">[[Interactomics]] </font></li>
<p>이 계획이 성공할 경우 새로운 유전자 검사방법 및 질병 치료법, 예방약제, 유전적 치료법의 개발이 가능해진다. </p>
+
    <li><font size="3">[[Functional genomics]] </font></li>
<p>&nbsp;</p>
+
    <li><font size="3">[[Computational genomics]] </font></li>
<p>연구방향</p>
+
    <li><font size="3">[[Nitrogenomics]]</font> </li>
<p>① [http://100.naver.com/100.php?id=761314 <u><font color="#0000ff">기능 유전체학</font></u>] : 각 유전자가 갖는 기능의 차이를 알아내고 그것을 인간생활에 이용하는 것이다. 이를 통해서 인간의 질병을 유발하는 유전자가 어떤 유전자인지 알아낼 수 있다. 또한, 유전자의 구조와 기능을 밝혀 인간의 장기를 만들어 낼 수도 있을 것이다. </p>
+
</ul>
<p>② [http://100.naver.com/100.php?id=761 <u><font color="#0000ff">비교 유전체학</font></u>] : 각 유전자의 차이를 조사하는 학문으로 사람간의 유전자 차이를 조사하는 단일염기변이는 [http://100.naver.com/100.php?id=122752 <u><font color="#0000ff">유전병</font></u>]을 발견하는 중요한 시발점이 된다. 이를 통해 환자 각자에게 가장 잘 맞는 약을 투약할 수 있고, 치료에도 도움이 될 수 있을 뿐 아니라, 의료비 절감, 부작용 방지 등 많은 이점들이 있을 것이다.</p>
+
<p>&nbsp;<br />
 +
<font size="4"><strong>External links<br />
 +
</strong></font>[http://genomics.org Genomics.org]<br />
 +
[http://personalgenomics.net Personalgenomics.net]<br />
 +
</p>
 +
<p><span class="editsection"></span><strong><span class="mw-headline"><font size="4"><br />
 +
References</font></span></strong></p>
 +
<ol class="references">
 +
    <li id="_note-0"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-0">^</a></strong> Min Jou W, Haegeman G, Ysebaert M, Fiers W., Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature. 1972 May 12;237(5350):82-8 </font></li>
 +
    <li id="_note-1"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-1">^</a></strong> Fiers W et al., Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene, Nature, 260, 500-507, 1976 </font></li>
 +
    <li id="_note-2"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-2">^</a></strong> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-95 </font></li>
 +
    <li id="_note-3"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-3">^</a></strong> <a class="external text" title="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html"><em>The Viral Genomes Resource</em>, NCBI Friday, 14 September, 2007</a></font> </li>
 +
    <li id="_note-4"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-4">^</a></strong> <a class="external text" title="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html"><em>Genome Project Statistic</em>, NCBI Friday, 14 September, 2007</a></font> </li>
 +
    <li id="_note-5"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-5">^</a></strong> <a class="external text" title="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm">BBC article <em>Human gene number slashed</em> from Wednesday, 20 October, 2004</a></font> </li>
 +
    <li id="_note-6"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-6">^</a></strong> <a class="external text" title="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml" rel="nofollow" href="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml">CBSE News, Thursday October 16, 2003</a></font> </li>
 +
    <li id="_note-7"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-7">^</a></strong> <a class="external text" title="http://www.genome.gov/12511476" rel="nofollow" href="http://www.genome.gov/12511476">NHGRI, pressrelease of the publishing of the dog genome</a></font> </li>
 +
    <li id="_note-McGrath"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-McGrath_0">^</a></strong> <cite class="book" style="FONT-STYLE: normal">Mc Grath S and van Sinderen D (editors). (2007). <em><a class="external text" title="http://www.horizonpress.com/phage" rel="nofollow" href="http://www.horizonpress.com/phage">Bacteriophage: Genetics and Molecular Biology</a></em>, 1st ed., Caister Academic Press. <a class="external text" title="http://www.horizonpress.com/phage" rel="nofollow" href="http://www.horizonpress.com/phage">ISBN 978-1-904455-14-1</a> .</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bacteriophage%3A+Genetics+and+Molecular+Biology&amp;rft.au=Mc+Grath+S+and+van+Sinderen+D+%28editors%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fphage">&nbsp;</span></font> </li>
 +
    <li id="_note-Herrero"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-Herrero_0">^</a></strong> <cite class="book" style="FONT-STYLE: normal">Herrero A and Flores E (editor). (2008). <em><a class="external text" title="http://www.horizonpress.com/cyan" rel="nofollow" href="http://www.horizonpress.com/cyan">The Cyanobacteria: Molecular Biology, Genomics and Evolution</a></em>, 1st ed., Caister Academic Press. <a class="external text" title="http://www.horizonpress.com/cyan" rel="nofollow" href="http://www.horizonpress.com/cyan">ISBN 978-1-904455-15-8</a> .</cite></font><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan"><font size="3"> </font><br />
 +
    </span></li>
 +
</ol>

Latest revision as of 22:15, 9 June 2008

Genomics is the omics study of genes of individual organisms, populations, and species.

It is also a paradigm of performing biological science that deviates from investigating single genes, their functions, and roles.

The main reason of an independent biological discipline is that it deals with very large sets of genetic information to automatically analyze information using interaction and network concepts. Genomics inevitably employs high performance computing and bioinformatics technologies.


History of the field

Genomics was practically founded by Fred Sanger group in 1970s when they developed an automatic gene sequencing technique and completed the first genomes; namely bacteriophage Φ-X174; (5,368 bp) and the bovine mitochondrial genome.

In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.[1] In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.[2] The first DNA-based genome to be sequenced in its entirety was that of bacteriophage Φ-X174; (5,368 bp), sequenced by Frederick Sanger in 1977[3]. The first free-living organism to be sequenced was that of Haemophilus influenzae (1.8 Mb) in 1995, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by Sanger centre and the Human Genome Project in early 2001.

As of September 2007, the complete sequence was known of about 1879 viruses [4], 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. [5] Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as Haemophilus influenzae. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (Saccharomyces cerevisiae) has long been an important model organism for the eukaryotic cell, while the fruit fly Drosophila melanogaster has been a very important tool (notably in early pre-molecular genetics). The worm Caenorhabditis elegans is an often used simple model for multicellular organisms. The zebrafish Brachydanio rerio is used for many developmental studies on the molecular level and the flower Arabidopsis thaliana is a model organism for flowering plants. The Japanese pufferfish (Takifugu rubripes) and the spotted green pufferfish (Tetraodon nigroviridis) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. [6] [7] The mammals dog (Canis familiaris), [8] brown rat (Rattus norvegicus), mouse (Mus musculus), and chimpanzee (Pan troglodytes) are all important model animals in medical research.

 

Bacteriophage Genomics

Bacteriophages have played and continue to play a key role in bacterial genetics and molecular biology. Historically, they were used to define gene structure and gene regulation. Also the first genome to be sequenced was a bacteriophage. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying phage evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of prophage sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.[9]

 

Cyanobacteria Genomics

At present there are 24 cyanobacteria for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six ProchlorococcusSynechococcus strains, Trichodesmium erythraeum IMS101 and Crocosphaera watsonii [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further Prochlorococcus and marine Synechococcus isolates, Acaryochloris and Prochloron, the N2-fixing filamentous cyanobacteria Nodularia spumigena, Lyngbya aestuarii and Lyngbya majuscula, as well as bacteriophages infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of photosynthesis, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.[10] strains, seven marine

 

See also

 
External links
Genomics.org
Personalgenomics.net


References

  1. ^ Min Jou W, Haegeman G, Ysebaert M, Fiers W., Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature. 1972 May 12;237(5350):82-8
  2. ^ Fiers W et al., Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene, Nature, 260, 500-507, 1976
  3. ^ Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-95
  4. ^ The Viral Genomes Resource, NCBI Friday, 14 September, 2007
  5. ^ Genome Project Statistic, NCBI Friday, 14 September, 2007
  6. ^ BBC article Human gene number slashed from Wednesday, 20 October, 2004
  7. ^ CBSE News, Thursday October 16, 2003
  8. ^ NHGRI, pressrelease of the publishing of the dog genome
  9. ^ Mc Grath S and van Sinderen D (editors). (2007). Bacteriophage: Genetics and Molecular Biology, 1st ed., Caister Academic Press. ISBN 978-1-904455-14-1 . 
  10. ^ Herrero A and Flores E (editor). (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution, 1st ed., Caister Academic Press. ISBN 978-1-904455-15-8 .