Difference between revisions of "Sphericity"
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<dl><dd><img class="tex" alt="\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}" src="http://upload.wikimedia.org/math/e/a/2/ea230750eba82fd8fe1b178ea651d242.png" /></dd></dl> | <dl><dd><img class="tex" alt="\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}" src="http://upload.wikimedia.org/math/e/a/2/ea230750eba82fd8fe1b178ea651d242.png" /></dd></dl> | ||
<p>where <span class="texhtml"><em>V</em><sub><em>p</em></sub></span> is volume of the particle and <span class="texhtml"><em>A</em><sub><em>p</em></sub></span> is the surface area of the particle</p> | <p>where <span class="texhtml"><em>V</em><sub><em>p</em></sub></span> is volume of the particle and <span class="texhtml"><em>A</em><sub><em>p</em></sub></span> is the surface area of the particle</p> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<p> </p> | <p> </p> | ||
− | < | + | <p><span class="mw-headline"><font size="5">Ellipsoidal Objects</font></span></p> |
− | |||
<p>The sphericity, <span class="texhtml">Ψ</span>, of an oblate spheroid (similar to the shape of the planet Earth) is defined as such:</p> | <p>The sphericity, <span class="texhtml">Ψ</span>, of an oblate spheroid (similar to the shape of the planet Earth) is defined as such:</p> | ||
<dl><dd><img class="tex" alt="\Psi = | <dl><dd><img class="tex" alt="\Psi = | ||
Line 16: | Line 10: | ||
<p><em>(where a, b are the semi-major, semi-minor axes, respectively.</em></p> | <p><em>(where a, b are the semi-major, semi-minor axes, respectively.</em></p> | ||
<p> </p> | <p> </p> | ||
− | < | + | <p><span class="mw-headline"><font size="5">Derivation</font></span></p> |
<p>Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.</p> | <p>Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.</p> | ||
<p>First we need to write surface area of the sphere, <span class="texhtml"><em>A</em><sub><em>s</em></sub></span> in terms of the volume of the particle, <span class="texhtml"><em>V</em><sub><em>p</em></sub></span></p> | <p>First we need to write surface area of the sphere, <span class="texhtml"><em>A</em><sub><em>s</em></sub></span> in terms of the volume of the particle, <span class="texhtml"><em>V</em><sub><em>p</em></sub></span></p> | ||
Line 25: | Line 19: | ||
<dl><dd><img class="tex" alt="\Psi = \frac{A_s}{A_p} = \frac{ \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }{A_{p}}" src="http://upload.wikimedia.org/math/0/6/9/06986e86f9d53b2e4f3560f330909416.png" /></dd></dl> | <dl><dd><img class="tex" alt="\Psi = \frac{A_s}{A_p} = \frac{ \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }{A_{p}}" src="http://upload.wikimedia.org/math/0/6/9/06986e86f9d53b2e4f3560f330909416.png" /></dd></dl> | ||
<p> </p> | <p> </p> | ||
− | < | + | <p><span class="mw-headline"><font size="5">Sphericity of common objects</font></span></p> |
<table style="MARGIN: 0pt auto; BORDER-COLLAPSE: collapse; TEXT-ALIGN: center" cellpadding="7" border="1"> | <table style="MARGIN: 0pt auto; BORDER-COLLAPSE: collapse; TEXT-ALIGN: center" cellpadding="7" border="1"> | ||
<tbody> | <tbody> | ||
Line 40: | Line 34: | ||
<tr> | <tr> | ||
<td>tetrahedron</td> | <td>tetrahedron</td> | ||
− | <td><img height="47" alt="Tetrahedron" src="http://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Tetrahedron.jpg/50px-Tetrahedron.jpg | + | <td><img height="47" alt="Tetrahedron" width="50" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Tetrahedron.jpg/50px-Tetrahedron.jpg" /></td> |
<td><img class="tex" alt="\frac{\sqrt{2}}{12}\,s^3" src="http://upload.wikimedia.org/math/f/0/3/f03ea7115c243660a2ea99e73ad310db.png" /></td> | <td><img class="tex" alt="\frac{\sqrt{2}}{12}\,s^3" src="http://upload.wikimedia.org/math/f/0/3/f03ea7115c243660a2ea99e73ad310db.png" /></td> | ||
<td><img class="tex" alt="\sqrt{3}\,s^2" src="http://upload.wikimedia.org/math/0/a/6/0a6e48b85549c8b6512fdd3906ac8aa6.png" /></td> | <td><img class="tex" alt="\sqrt{3}\,s^2" src="http://upload.wikimedia.org/math/0/a/6/0a6e48b85549c8b6512fdd3906ac8aa6.png" /></td> | ||
Line 47: | Line 41: | ||
<tr> | <tr> | ||
<td>cube (hexahedron)</td> | <td>cube (hexahedron)</td> | ||
− | <td><img height="56" alt="Hexahedron (cube)" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/78/Hexahedron.jpg/50px-Hexahedron.jpg | + | <td><img height="56" alt="Hexahedron (cube)" width="50" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/78/Hexahedron.jpg/50px-Hexahedron.jpg" /></td> |
<td><img class="tex" alt="\,s^3" src="http://upload.wikimedia.org/math/7/9/9/7998c630c83b898c1fdb72d667936996.png" /></td> | <td><img class="tex" alt="\,s^3" src="http://upload.wikimedia.org/math/7/9/9/7998c630c83b898c1fdb72d667936996.png" /></td> | ||
<td><img class="tex" alt="6\,s^2" src="http://upload.wikimedia.org/math/b/4/7/b472474af030c5d9cf3620a43c5e417b.png" /></td> | <td><img class="tex" alt="6\,s^2" src="http://upload.wikimedia.org/math/b/4/7/b472474af030c5d9cf3620a43c5e417b.png" /></td> | ||
Line 58: | Line 52: | ||
<tr> | <tr> | ||
<td>octahedron</td> | <td>octahedron</td> | ||
− | <td><img height="50" alt="Octahedron" src="http://upload.wikimedia.org/wikipedia/commons/thumb/0/07/Octahedron.svg/50px-Octahedron.svg.png | + | <td><img height="50" alt="Octahedron" width="50" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/0/07/Octahedron.svg/50px-Octahedron.svg.png" /></td> |
<td><img class="tex" alt=" \frac{1}{3} \sqrt{2}\, s^3" src="http://upload.wikimedia.org/math/d/5/c/d5c9af02c97d15e54291f3ddce4d2211.png" /></td> | <td><img class="tex" alt=" \frac{1}{3} \sqrt{2}\, s^3" src="http://upload.wikimedia.org/math/d/5/c/d5c9af02c97d15e54291f3ddce4d2211.png" /></td> | ||
<td><img class="tex" alt=" 2 \sqrt{3}\, s^2" src="http://upload.wikimedia.org/math/2/9/3/2935e3febfb41a617e0fea6efc2bab02.png" /></td> | <td><img class="tex" alt=" 2 \sqrt{3}\, s^2" src="http://upload.wikimedia.org/math/2/9/3/2935e3febfb41a617e0fea6efc2bab02.png" /></td> | ||
Line 69: | Line 63: | ||
<tr> | <tr> | ||
<td>dodecahedron</td> | <td>dodecahedron</td> | ||
− | <td><img height="48" alt="Dodecahedron" src="http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/POV-Ray-Dodecahedron.svg/50px-POV-Ray-Dodecahedron.svg.png | + | <td><img height="48" alt="Dodecahedron" width="50" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/POV-Ray-Dodecahedron.svg/50px-POV-Ray-Dodecahedron.svg.png" /></td> |
<td><img class="tex" alt=" \frac{1}{4} \left(15 + 7\sqrt{5}\right)\, s^3" src="http://upload.wikimedia.org/math/c/2/7/c2750faa2f4f0b5a934390dd3d135dd2.png" /></td> | <td><img class="tex" alt=" \frac{1}{4} \left(15 + 7\sqrt{5}\right)\, s^3" src="http://upload.wikimedia.org/math/c/2/7/c2750faa2f4f0b5a934390dd3d135dd2.png" /></td> | ||
<td><img class="tex" alt=" 3 \sqrt{25 + 10\sqrt{5}}\, s^2" src="http://upload.wikimedia.org/math/1/9/b/19bcc8e5c2da1d6a9c9290e3bbb55011.png" /></td> | <td><img class="tex" alt=" 3 \sqrt{25 + 10\sqrt{5}}\, s^2" src="http://upload.wikimedia.org/math/1/9/b/19bcc8e5c2da1d6a9c9290e3bbb55011.png" /></td> | ||
Line 80: | Line 74: | ||
<tr> | <tr> | ||
<td>icosahedron</td> | <td>icosahedron</td> | ||
− | <td><img height="48" alt="Icosahedron" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedron.jpg/50px-Icosahedron.jpg | + | <td><img height="48" alt="Icosahedron" width="50" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedron.jpg/50px-Icosahedron.jpg" /></td> |
<td><img class="tex" alt="\frac{5}{12}\left(3+\sqrt{5}\right)\, s^3" src="http://upload.wikimedia.org/math/7/7/e/77ee1cd7a4858ddfa2a994c29d7d2db5.png" /></td> | <td><img class="tex" alt="\frac{5}{12}\left(3+\sqrt{5}\right)\, s^3" src="http://upload.wikimedia.org/math/7/7/e/77ee1cd7a4858ddfa2a994c29d7d2db5.png" /></td> | ||
<td><img class="tex" alt="5\sqrt{3}\,s^2" src="http://upload.wikimedia.org/math/0/f/5/0f589b4ae2f26ce5c4b29705a02d3498.png" /></td> | <td><img class="tex" alt="5\sqrt{3}\,s^2" src="http://upload.wikimedia.org/math/0/f/5/0f589b4ae2f26ce5c4b29705a02d3498.png" /></td> | ||
Line 152: | Line 146: | ||
</table> | </table> | ||
<p> </p> | <p> </p> | ||
− | < | + | <p><span class="mw-headline"><font size="5">Sphericity in Statistics</font></span></p> |
<p>In statistical analyses, sphericity relates to the equality of the variances of the differences between levels of the repeated measures factor. Sphericity requires that the variances for each set of difference scores are equal. This is an assumption of an ANOVA with a repeated measures factor, where violations of this assumption can invalidate the analysis conclusions. Mauchly's sphericity test is the statistical test used to evaluate sphericity.</p> | <p>In statistical analyses, sphericity relates to the equality of the variances of the differences between levels of the repeated measures factor. Sphericity requires that the variances for each set of difference scores are equal. This is an assumption of an ANOVA with a repeated measures factor, where violations of this assumption can invalidate the analysis conclusions. Mauchly's sphericity test is the statistical test used to evaluate sphericity.</p> | ||
<p> </p> | <p> </p> | ||
− | < | + | <p><span class="mw-headline"><font size="5">References</font></span></p> |
<ol class="references"> | <ol class="references"> | ||
− | <li id="cite_note-0"><strong>^</strong> <cite style="FONT-STYLE: normal">Wadell, Hakon (1935). "Volume, Shape and Roundness of Quartz Particles". <em>Journal of Geology</em> <strong>43</strong>: 250–280.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volume%2C+Shape+and+Roundness+of+Quartz+Particles&rft.jtitle=Journal+of+Geology&rft.date=1935&rft.volume=43&rft.aulast=Wadell&rft.aufirst=Hakon&rft.pages=250%E2%80%93280"> </span></li> | + | <li id="cite_note-0"><strong>^</strong> <cite style="FONT-STYLE: normal">Wadell, Hakon (1935). "Volume, Shape and Roundness of Quartz Particles". <em>Journal of Geology</em> <strong>43</strong>: 250–280.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volume%2C+Shape+and+Roundness+of+Quartz+Particles&rft.jtitle=Journal+of+Geology&rft.date=1935&rft.volume=43&rft.aulast=Wadell&rft.aufirst=Hakon&rft.pages=250%E2%80%93280"> </span> </li> |
</ol> | </ol> | ||
<p> </p> | <p> </p> | ||
− | < | + | <p><span class="mw-headline"><font size="5">See also</font></span></p> |
<ul> | <ul> | ||
− | <li>Rounding (sediment)</li> | + | <li>Rounding (sediment) </li> |
+ | <li>[[Structural biology]]</li> | ||
</ul> | </ul> | ||
− | <p> | + | <p> </p> |
− | < | + | <p><span class="mw-headline"><font size="5">External links</font></span></p> |
<ul> | <ul> | ||
− | <li><a class="external text" title="http://www.howround.com/" href="http://www.howround.com/ | + | <li><a class="external text" title="http://www.howround.com/" rel="nofollow" href="http://www.howround.com/">How round is your circle?</a> </li> |
− | <li><a class="external text" title="http://people.uncw.edu/dockal/gly312/grains/grains.htm" href="http://people.uncw.edu/dockal/gly312/grains/grains.htm | + | <li><a class="external text" title="http://people.uncw.edu/dockal/gly312/grains/grains.htm" rel="nofollow" href="http://people.uncw.edu/dockal/gly312/grains/grains.htm">Grain Morphology: Roundness, Surface Features, and Sphericity of Grains</a> </li> |
</ul> | </ul> |
Latest revision as of 07:46, 31 March 2008
Sphericity is a measure of how spherical (round) an object is. As such, it is a specific example of a compactness measure of a shape. Defined by Wadell in 1935,[1] the sphericity, Ψ, of a particle is the ratio of the surface area of a sphere (with the same volume as the given particle) to the surface area of the particle:
where Vp is volume of the particle and Ap is the surface area of the particle
Ellipsoidal Objects
The sphericity, Ψ, of an oblate spheroid (similar to the shape of the planet Earth) is defined as such:
(where a, b are the semi-major, semi-minor axes, respectively.
Derivation
Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.
First we need to write surface area of the sphere, As in terms of the volume of the particle, Vp
therefore
hence we define Ψ as:
Sphericity of common objects
Name | Picture | Volume | Area | Sphericity |
---|---|---|---|---|
Platonic Solids | ||||
tetrahedron | ||||
cube (hexahedron) | ||||
octahedron | ||||
dodecahedron | ||||
icosahedron | ||||
Round Shapes | ||||
ideal cone |
||||
hemisphere (half sphere) |
||||
ideal cylinder |
||||
ideal torus (R = r) |
||||
sphere |
Sphericity in Statistics
In statistical analyses, sphericity relates to the equality of the variances of the differences between levels of the repeated measures factor. Sphericity requires that the variances for each set of difference scores are equal. This is an assumption of an ANOVA with a repeated measures factor, where violations of this assumption can invalidate the analysis conclusions. Mauchly's sphericity test is the statistical test used to evaluate sphericity.
References
- ^ Wadell, Hakon (1935). "Volume, Shape and Roundness of Quartz Particles". Journal of Geology 43: 250–280.
See also
- Rounding (sediment)
- Structural biology
External links