Changes

From Opengenome.net

Biotransformation

11,984 bytes added, 11:11, 7 October 2008
no edit summary
<p><strong>Biotransformation</strong> is the chemical modification (or modifications) made by an organism on a chemical compound. If this modification ends in mineral compounds like CO<sub>2</sub>, NH<sub>3</sub><sup>+</sup> or H<sub>2</sub>O, the biotransformation is called mineralisation. Biotransformation means chemical alteration of the drug</p>
<p>in the body . It is needed to render nonpolar compounds polar so that they are not reabsorbed in renal tubules and are excreted.</p>
<script type="text/javascript">
//<![CDATA[
if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); }
//]]>
</script>
<p><font color="#000080"></font></p>
<h2><span class="mw-headline">Drug metabolism</span></h2>
<p>The <font color="#000080">metabolism</font> of a <font color="#000080">drug</font> or <font color="#000080">toxin</font> in a body is an example of a biotransformation. Typically the body deals with a foreign compound by making it more soluble, to increase the rate of its excretion through the urine. There are a number of different process that can occur,The pathways of drug metabolism can divided in to:</p>
<ul>
<li>phase І</li>
<li>phase II</li>
</ul>
<p><br />
</p>
<p>&nbsp;</p>
<h4><span class="mw-headline">Phase I reaction</span></h4>
<ul>
<li>It includes oxidative, reductive and hydrolytic reactions.</li>
</ul>
<ul>
<li>In case of these type of reactions, the polar group is either introduced or unmasked,so the drug molecule becomes solublised and excreted.</li>
</ul>
<p>&nbsp;</p>
<h4><span class="mw-headline">Phase II reaction</span></h4>
<ul>
<li>These reactions involve covalent attachment of small polar endogenous molecule like glucuronic acid, sulphate, glycine etc. to form highly water soluble substances.</li>
</ul>
<ul>
<li>Thus, they are known as conjugation reaction</li>
</ul>
<ul>
<li>The formed products have more molecular size. So, termed as synthetic reaction.</li>
</ul>
<p>&nbsp;</p>
<h2><span class="mw-headline">Microbial biotransformation</span></h2>
<p>Biotransformation of various <font color="#000080">pollutants</font> is a sustainable way to clean up contaminated environments.<sup class="reference" id="cite_ref-Diaz_0-0"><font color="#000080">[1]</font></sup> These <font color="#000080">bioremediation</font> and biotransformation methods harness the naturally occurring, microbial catabolic diversity to degrade, transform or accumulate a huge range of compounds including <font color="#000080">hydrocarbons</font> (e.g. oil), <font color="#000080">polychlorinated biphenyls</font> (PCBs), <font color="#000080">polyaromatic hydrocarbons</font> (PAHs), pharmaceutical substances, <font color="#000080">radionuclides</font> and metals. Major methodological breakthroughs in recent years have enabled detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant <font color="#000080">microorganisms</font> providing unprecedented insights into biotransformation and <font color="#000080">biodegradative</font> pathways and the ability of organisms to adapt to changing environmental conditions.</p>
<p>Biological processes play a major role in the removal of <font color="#000080">contaminants</font> and <font color="#000080">pollutants</font> from the <font color="#000080">environment</font>. Some microorganisms possess an astonishing catabolic versatility to degrade or transform such compounds. New methodological breakthroughs in <font color="#000080">sequencing</font>, <font color="#000080">genomics</font>, <font color="#000080">proteomics</font>, <font color="#000080">bioinformatics</font> and imaging are producing vast amounts of information. In the field of Environmental <font color="#000080">Microbiology</font>, <font color="#800080">genome</font>-based global studies open a new era providing unprecedented <em>in silico</em> views of metabolic and regulatory networks, as well as clues to the evolution of biochemical pathways relevant to biotransformation and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds and they are accelerating the development of <font color="#000080">bioremediation</font> technologies and biotransformation processes.<sup class="reference" id="cite_ref-Diaz_0-1"><font color="#000080">[1]</font></sup> Also there is other approach of biotransformation called enzymatic biotransformation.</p>
<p>&nbsp;</p>
<h2><span class="mw-headline">Oil Biodegradation</span></h2>
<p><font color="#000080">Petroleum</font> oil is toxic for most life forms and episodic and chronic <font color="#000080">pollution</font> of the environment by oil causes major ecological perturbations. Marine environments are especially vulnerable since oil spills of coastal regions and the open sea are poorly containable and mitigation is difficult. In addition to pollution through human activities, millions of tons of petroleum enter the marine environment every year from natural seepages. Despite its toxicity, a considerable fraction of petroleum oil entering marine systems is eliminated by the hydrocarbon-degrading activities of microbial communities, in particular by a remarkable recently discovered group of specialists, the so-called hydrocarbonoclastic bacteria (HCB). <em><font color="#000080">Alcanivorax borkumensis</font></em>, a paradigm of HCB and probably the most important global oil degrader, was the first to be subjected to a functional genomic analysis. This analysis has yielded important new insights into its capacity for (i) n-alkane degradation including metabolism, <font color="#000080">biosurfactant</font> production and <font color="#000080">biofilm</font> formation, (ii) scavenging of nutrients and cofactors in the oligotrophic marine environment, as well as (iii) coping with various habitat-specific stresses. The understanding thereby gained constitutes a significant advance in efforts towards the design of new knowledge-based strategies for the mitigation of ecological damage caused by oil pollution of marine habitats. HCB also have potential biotechnological applications in the areas of <font color="#000080">bioplastics</font> and <font color="#000080">biocatalysis</font>.<sup class="reference" id="cite_ref-chapter9_1-0"><font color="#000080">[2]</font></sup></p>
<p><font color="#000080"></font></p>
<h2><span class="mw-headline">Metabolic Engineering and Biocatalytic Applications</span></h2>
<p>The study of the fate of persistent organic chemicals in the environment has revealed a large reservoir of enzymatic reactions with a large potential in preparative organic synthesis, which has already been exploited for a number of <font color="#000080">oxygenases</font> on pilot and even on industrial scale. Novel catalysts can be obtained from <font color="#000080">metagenomic</font> libraries and <font color="#000080">DNA sequence</font> based approaches. Our increasing capabilities in adapting the catalysts to specific reactions and process requirements by rational and random <font color="#000080">mutagenesis</font> broadens the scope for application in the fine chemical industry, but also in the field of <font color="#000080">biodegradation</font>. In many cases, these catalysts need to be exploited in whole cell <font color="#000080">bioconversions</font> or in <font color="#000080">fermentations</font>, calling for system-wide approaches to understanding strain physiology and metabolism and rational approaches to the engineering of whole cells as they are increasingly put forward in the area of systems <font color="#000080">biotechnology</font> and synthetic biology.<sup class="reference" id="cite_ref-chapter12_2-0"><font color="#000080">[3]</font></sup></p>
<p><font color="#000080"></font></p>
<h2><span class="mw-headline">See also</span></h2>
<ul>
<li><font color="#000080">Microbial biodegradation</font></li>
<li><font color="#000080">Xenobiotic metabolism</font></li>
<li><font color="#000080">Biodegradation</font></li>
<li><font color="#000080">Bioremediation</font></li>
<li><font color="#000080">Mineralisation</font></li>
</ul>
<p><font color="#000080"></font></p>
<h2><span class="mw-headline">References</span></h2>
<div class="references-small">
<ol class="references">
<li id="cite_note-Diaz-0">^ <sup><em><strong><font color="#000080">a</font></strong></em></sup> <sup><em><strong><font color="#000080">b</font></strong></em></sup> <cite class="book" style="FONT-STYLE: normal">Diaz E (editor). (2008). <em><font color="#000080">Microbial Biodegradation: Genomics and Molecular Biology</font></em>, 1st ed., Caister Academic Press. <font color="#000080">ISBN 978-1-904455-17-2</font>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Microbial+Biodegradation%3A+Genomics+and+Molecular+Biology&amp;rft.au=Diaz+E+%28editor%29.&amp;rft.date=2008&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fbiod"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-chapter9-1"><strong><font color="#000080">^</font></strong> <cite class="book" style="FONT-STYLE: normal">Martins VAP et al (2008). &quot;<font color="#000080">Genomic Insights into Oil Biodegradation in Marine Systems</font>&quot;, <em>Microbial Biodegradation: Genomics and Molecular Biology</em>. Caister Academic Press. <font color="#000080">ISBN 978-1-904455-17-2</font>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Microbial+Biodegradation%3A+Genomics+and+Molecular+Biology&amp;rft.atitle=Genomic+Insights+into+Oil+Biodegradation+in+Marine+Systems&amp;rft.au=Martins+VAP+et+al&amp;rft.date=2008&amp;rft.pub=Caister+Academic+Press"><span style="DISPLAY: none">&nbsp;</span></span></li>
<li id="cite_note-chapter12-2"><strong><font color="#000080">^</font></strong> <cite class="book" style="FONT-STYLE: normal">Meyer A and Panke S (2008). &quot;<font color="#000080">Genomics in Metabolic Engineering and Biocatalytic Applications of the Pollutant Degradation Machinery</font>&quot;, <em>Microbial Biodegradation: Genomics and Molecular Biology</em>. Caister Academic Press. <font color="#000080">ISBN 978-1-904455-17-2</font>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Microbial+Biodegradation%3A+Genomics+and+Molecular+Biology&amp;rft.atitle=Genomics+in+Metabolic+Engineering+and+Biocatalytic+Applications+of+the+Pollutant+Degradation+Machinery&amp;rft.au=Meyer+A+and+Panke+S&amp;rft.date=2008&amp;rft.pub=Caister+Academic+Press"><span style="DISPLAY: none">&nbsp;</span></span></li>
</ol>
</div>
<p>&nbsp;</p>
<h2><span class="mw-headline">External links</span></h2>
<ul>
<li><a class="external text" title="http://www.pharmacology.googlepages.com/metabolism.html" href="http://www.pharmacology.googlepages.com/metabolism.html" rel="nofollow"><font color="#000080">Biotransformation of Drugs</font></a></li>
<li><a class="external text" title="http://www.horizonpress.com/gateway/biodegradation.html" href="http://www.horizonpress.com/gateway/biodegradation.html" rel="nofollow"><font color="#000080">Biodegradation, Bioremediation and Biotransformation</font></a></li>
<li><a class="external text" title="http://www.horizonpress.com/blogger/2007/09/microbial-biodegradation-bioremediation.html" href="http://www.horizonpress.com/blogger/2007/09/microbial-biodegradation-bioremediation.html" rel="nofollow"><font color="#000080">Microbial Biodegradation</font></a></li>
</ul>

Navigation menu