Changes

From Opengenome.net

Biochemistry

125 bytes removed, 20:07, 3 March 2008
no edit summary
<p>The biochemistry of cell metabolism and the endocrine system has been extensively described. Other areas of biochemistry include the genetic code (DNA, RNA), protein synthesis, cell membrane transport, and signal transduction.</p>
<p>This article only discusses terrestrial biochemistry (carbon- and water-based), as all the life forms we know are on Earth. Since life forms alive today are hypothesized by most to have descended from the same common ancestor, they have similar biochemistries, even for matters that seem to be essentially arbitrary, such as handedness of various biomolecules. It is unknown whether alternative biochemistries are possible or practical.</p>
<script type="text/javascript">//<![CDATA[ if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } //]]></script>
<p>&nbsp;</p>
<h2><span class="mw-headline">History</span></h2>
</dd></dl>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 152px"><img class="thumbimage" height="209" alt="Friedrich Wöhler" width="150" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Friedrich_woehler.jpg/150px-Friedrich_woehler.jpg" width="150" border="0" />
<div class="thumbcaption">
<div class="magnify"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" width="15" /></div>
Friedrich W&ouml;hler</div>
</div>
<h3><span class="mw-headline">Monosaccharides</span></h3>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 182px"><img class="thumbimage" height="99" alt="Glucose" width="180" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Glucose-2D-skeletal.png/180px-Glucose-2D-skeletal.png" width="180" border="0" />
<div class="thumbcaption">
<div class="magnify"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" width="15" /></div>
Glucose</div>
</div>
<h3><span class="mw-headline">Disaccharides</span></h3>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 182px"><img class="thumbimage" height="90" alt="Sucrose: ordinary table sugar and probably the most familiar carbohydrate." width="180" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Saccharose.svg/180px-Saccharose.svg.png" width="180" border="0" />
<div class="thumbcaption">
<div class="magnify"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" width="15" /></div>
Sucrose: ordinary table sugar and probably the most familiar carbohydrate.</div>
</div>
<h3><span class="mw-headline">Oligosaccharides and polysaccharides</span></h3>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 182px"><img class="thumbimage" height="80" alt="Cellulose as polymer of β-D-glucose" width="180" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Cellulose-2D-skeletal.png/180px-Cellulose-2D-skeletal.png" width="180" border="0" />
<div class="thumbcaption">
<div class="magnify"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" width="15" /></div>
Cellulose as polymer of &beta;-<small><font size="2">D</font></small>-glucose</div>
</div>
<p>Many monosaccharides joined together make a polysaccharide. They can be joined together in one long linear chain, or they may be branched. Two of the most common polysaccharides are cellulose and glycogen, both consisting of repeating glucose monomers.</p>
<ul>
<li><em>Cellulose</em> is made by plants and is an important structural component of their cell walls. Humans can neither manufacture nor digest it.</li> <li><em>Glycogen</em>, on the other hand, is an animal carbohydrate; humans and other animals use it as a form of energy storage.</li>
</ul>
<p>&nbsp;</p>
</dd></dl>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 152px"><img class="thumbimage" height="150" alt="A schematic of hemoglobin. The red and blue ribbons represent the protein globin; the green structures are the heme groups." width="150" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/1GZX_Haemoglobin.png/150px-1GZX_Haemoglobin.png" width="150" border="0" />
<div class="thumbcaption">
<div class="magnify"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" width="15" /></div>
A schematic of hemoglobin. The red and blue ribbons represent the protein globin; the green structures are the heme groups.</div>
</div>
<p>In essence, proteins are chains of amino acids. An amino acid consists of a carbon atom bound to four groups. One is an amino group, &mdash;NH<sub>2</sub>, and one is a carboxylic acid group, &mdash;COOH (although these exist as &mdash;NH<sub>3</sub><sup>+</sup> and &mdash;COO<sup>&minus;</sup> under physiologic conditions). The third is a simple hydrogen atom. The fourth is commonly denoted &quot;&mdash;R&quot; and is different for each amino acid. There are twenty standard amino acids. Some of these have functions by themselves or in a modified form; for instance, glutamate functions as an important neurotransmitter.</p>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 352px"><img class="thumbimage" height="93" alt="Generic amino acids (1) in neutral form, (2) as they exist physiologically, and (3) joined together as a dipeptide." width="350" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/8/82/Amino_acids_1.png/350px-Amino_acids_1.png" width="350" border="0" />
<div class="thumbcaption">
<div class="magnify"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" width="15" /></div>
Generic amino acids (1) in neutral form, (2) as they exist physiologically, and (3) joined together as a dipeptide.</div>
</div>
<p><span class="mw-headline"><font size="5">Relationship to other &quot;molecular-scale&quot; biological sciences</font></span></p>
<div class="thumb tright">
<div class="thumbinner" style="WIDTH: 252px"><img class="thumbimage" height="241" alt="Schematic relationship between biochemistry, genetics and molecular biology" width="250" border="0" src="http://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Schematic_relationship_between_biochemistry%2C_genetics_and_molecular_biology.svg/250px-Schematic_relationship_between_biochemistry%2C_genetics_and_molecular_biology.svg.png" width="250" border="0" />
<div class="thumbcaption">
<div class="magnify"><img height="11" alt="" width="15" src="http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png" width="15" /></div>
<em>Schematic relationship between biochemistry, genetics and molecular biology</em></div>
</div>
<p>Researchers in biochemistry use specific techniques native to biochemistry, but increasingly combine these with techniques and ideas from genetics, molecular biology and biophysics. There has never been a hard-line between these disciplines in terms of content and technique, but members of each discipline have in the past been very territorial; today the terms <em>molecular biology</em> and <em>biochemistry</em> are nearly interchangeable. The following figure is a schematic that depicts one possible view of the relationship between the fields:</p>
<ul>
<li><em>Biochemistry</em> is the study of the chemical substances and vital processes occurring in living organisms. Biochemists focus heavily on the role, function, and structure of biomolecules. The study of the chemistry behind biological processes and the synthesis of biologically active molecules are examples of biochemistry.</li> <li><em>Genetics</em> is the study of the effect of genetic differences on organisms. Often this can be inferred by the absence of a normal component (e.g. one gene). The study of &quot;mutants&quot; &ndash; organisms which lack one or more functional components with respect to the so-called &quot;wild type&quot; or normal phenotype. Genetic interactions (epistasis) can often confound simple interpretations of such &quot;knock-out&quot; studies.</li> <li><em>Molecular biology</em> is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. The central dogma of molecular biology where genetic material is transcribed into RNA and then translated into protein, despite being an oversimplified picture of molecular biology, still provides a good starting point for understanding the field. This picture, however, is undergoing revision in light of emerging novel roles for RNA.</li> <li><em>Chemical Biology</em> seeks to develop new tools based on small molecules that allow minimal perturbation of biological systems while providing detailed information about their function. Further, chemical biology employs biological systems to create non-natural hybrids between biomolecules and synthetic devices (for example emptied viral capsids that can deliver gene therapy or drug molecules).</li>
</ul>
<p>Another example of an nucleic acid are ATP. They release energy to the cell by breaking down glucose.</p>
<div class="references-small">
<ol class="references">
<li id="_note-0"><strong>^</strong> <strong>See:</strong> Chemistry (etymology)</li> <li id="_note-1"><strong>^</strong> <cite style="FONT-STYLE: normal">W&ouml;hler, F. (1828). &quot;Ueber k&uuml;nstliche Bildung des Harnstoffs.&quot;. <em>Ann. Phys. Chem.</em> 12: 253-256.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Ueber+k%C3%BCnstliche+Bildung+des+Harnstoffs.&amp;rft.jtitle=Ann.+Phys.+Chem.&amp;rft.date=1828&amp;rft.volume=12&amp;rft.au=W%C3%B6hler%2C+F.&amp;rft.pages=253-256"> </span></li> <li id="_note-2"><strong>^</strong> <cite style="FONT-STYLE: normal">Kauffman, G. B. and Chooljian, S.H. (2001). &quot;Friedrich W&ouml;hler (1800&ndash;1882), on the Bicentennial of His Birth&quot;. <em>The Chemical Educator</em> 6 (2): 121-133. doi:10.1007/s00897010444a.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Friedrich+W%C3%B6hler+%281800%E2%80%931882%29%2C+on+the+Bicentennial+of+His+Birth&amp;rft.jtitle=The+Chemical+Educator&amp;rft.date=2001&amp;rft.volume=6&amp;rft.issue=2&amp;rft.au=Kauffman%2C+G.+B.+and+Chooljian%2C+S.H.&amp;rft.pages=121-133&amp;rft_id=info:doi/10.1007%2Fs00897010444a"> </span></li>
</ol>
</div>
<h2><span class="mw-headline">Further reading</span></h2>
<ul>
<li><cite class="book" id="Reference-Hunter-2000" style="FONT-STYLE: normal">Hunter, Graeme K. (2000). <em>Vital Forces: The Discovery of the Molecular Basis of Life</em>. San Diego: Academic Press. ISBN 0-12-361810-X.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vital+Forces%3A+The+Discovery+of+the+Molecular+Basis+of+Life&amp;rft.aulast=Hunter&amp;rft.aufirst=Graeme+K.&amp;rft.pub=Academic+Press&amp;rft.place=San+Diego">&nbsp;</span></li> <li>Proceedings of National academy of Science of the United States of America, ISSN: 1091-6490 (electronic)</li>
</ul>
<p>&nbsp;</p>
<div style="-moz-column-count: 2">
<ul>
<li>List of basic biochemistry topics</li> <li>List of biochemistry topics</li> <li>List of biochemists</li> <li>List of biomolecules</li> <li>List of geneticists &amp; biochemists</li> <li>Important publications in biochemistry (biology)</li> <li>Important publications in biochemistry (chemistry)</li>
</ul>
</div>
<div style="-moz-column-count: 2">
<ul>
<li>Veterinary/Animal Biochemistry</li> <li>Metabolome</li> <li>Metabolomics</li> <li>Plant biochemistry</li> <li>Alternative biochemistry</li> <li>Biological psychiatry</li> <li>Chemical ecology</li> <li>Chemical imbalance theory</li> <li>Computational biomodeling</li> <li>Molecular biology</li> <li>Structural biology</li> <li>Biophysics</li> <li>Molecular medicine</li> <li>Stoichiometry</li>
</ul>
</div>
</div>
</div>
<a class="external text" title="http://www.biochemweb.org/" rel="nofollow" href="http://www.biochemweb.org/" rel="nofollow">The Virtual Library of Biochemistry and Cell Biology</a></div>
</div>
<ul>
<li><a class="external text" title="http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&amp;rid=stryer.TOC&amp;depth=2" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&amp;rid=stryer.TOC&amp;depth=2" rel="nofollow">Biochemistry, 5th ed.</a> Full text of Berg, Tymoczko, and Stryer, courtesy of <a title="National Center for Biotechnology Information" href="http://en.wikipedia.org/wiki/National_Center_for_Biotechnology_Information">NCBI</a>.</li> <li><a class="external text" title="http://www.web.virginia.edu/Heidi/home.htm" rel="nofollow" href="http://www.web.virginia.edu/Heidi/home.htm" rel="nofollow">Biochemistry, 2nd ed.</a> Full text of Garrett and Grisham.</li> <li><a class="external text" title="http://www.springer.com/protein-zone" rel="nofollow" href="http://www.springer.com/protein-zone" rel="nofollow">The Protein Zone</a></li>
</ul>
0
edits

Navigation menu